
The Fresh Approach:
functional programming with
names and binders.

A thesis submitted for the Degree of Doctor in Philosophy,

by Mark Ross Shinwell of Queens’ College.

Copyright c© Mark Ross Shinwell, 2004–2005.

This is the version of the thesis approved for the PhD degree.

It was produced on 23rd February 2005.

Typed with vim and set with LATEX 2ε in Bitstream Charter 11pt,

with headings in Antique (www.eknp.com).

To my parents and friends;

and to Andrew Pitts, without whom

this thesis would not be a reality.

Abstract

This thesis concerns the development of a language called Fresh Objective

Caml, which is an extension of the Objective Caml language. It provides for

the manipulation of syntactic structures involving α-convertible names and

binding operations.

After an introductory chapter which includes a survey of related work,

we describe the Fresh Objective Caml language in detail. We next proceed

to formalise a small core language which captures its essence: we call

this Mini-FreshML. We provide two varieties of operational semantics for

this language and prove them equivalent. Then in order to prove correct-

ness properties of representations of syntax in the language we introduce

a new variety of domain theory called FM-domain theory, based on the

permutation model of name binding of Pitts and Gabbay. We show how

classical domain-theoretic constructions—including those for the solution

of recursive domain equations—fall naturally into this setting, where they

are augmented by new constructions to handle name-binding.

After developing the necessary domain theory, we demonstrate how it

may be used to give a monadic denotational semantics to Mini-FreshML.

This semantics in itself is quite novel and demonstrates how a simple monad

of continuations is sufficient to model dynamic allocation of names. We

prove that our denotational semantics is computationally adequate with

respect to the operational semantics—in other words, equality of denotation

implies observational equivalence. We then show how the denotational

semantics may be used to prove our desired correctness properties.

In the penultimate chapter, we examine the Fresh O’Caml implementa-

tion itself, describing detailed issues in the compiler and runtime system.

Then in the final chapter we provide an assessment of the work completed

so far together with a discussion of future avenues of research.

i

Declaration

This thesis:

• is my own work and contains nothing which is the outcome of work

done in collaboration with others, except as specified in the text and

§1.3;

• is not substantially the same as any that I have submitted for a degree

or diploma or other qualification at any other university; and

• does not exceed the prescribed limit of 60,000 words.

Mark Shinwell

Cambridge, England, February 2005

iii

Acknowledgements

This thesis represents the culmination of approximately four years of work.

That is a long time and hereinafter is a suitably long list of acknowledge-

ments to reflect that. Before starting, I must acknowledge all those whom I

have forgotten to mention specifically in the following text.

Firstly, I must thank my parents for supporting me and ensuring that I

had a consistently good education through childhood so that I could come

up to Cambridge to read Computer Science in 1997. Without them, you

would not be reading this thesis now.

Professor Andrew Pitts of the Computer Laboratory has been my re-

search supervisor during my PhD years and immense gratitude is due to

him for the great amount of advice, teaching and assistance with which he

has provided me. Many thanks must also go to my officemate Matthew

Parkinson and my other colleagues in the laboratory for their advice and

support.

Dr Robin Walker of Queens’ College provided valuable support and ad-

vice, having been my Director of Studies for the undergraduate course from

October 1997 until June 2000. Nick Benton, Bye-Fellow at Queens’ and a

researcher at Microsoft Research Cambridge has also been of great help.

Outside of the laboratory, various people have helped to keep me on

track during the PhD years. Not forgetting my various housemates, the

members of the Cambridge University Caving Club (CUCC) in particular

have provided a valuable social circle. Indeed, a proportion of the thesis

was written during the 2004 CUCC expedition to the Totes Gebirge region

of Austria. Hilde and Karin Wilpernig and family, of Gasthof Staud’nwirt

just outside Bad Aussee, must be thanked for their excellent hospitality.

From time to time I have spoken at conferences and workshops about

the topics in this thesis: most notably at ICFP 2003 in Uppsala, Sweden; at

the MERλIN workshop during the same conference; and at the APPSEM-2

v

vi

workshop of April 2004 in Tallinn, Estonia. My thanks extend to those who

have provided feedback as a result of these talks.

Didier Rémy and Xavier Leroy must be thanked for their hospitality

during a visit to INRIA Rocquencourt in September 2003 and also for other

helpful ideas and advice.

Keith Wansbrough deserves credit not only for useful feedback, sugges-

tions and bug-fixes but also for the delightful glyphs A andB used in this

document.

Since its release in 2003, the Fresh O’Caml language described in this

thesis has proved popular across the world. The current user base must be

thanked for their take-up of the software and their tolerance whilst the sys-

tem reaches maturity. The completion of this thesis will enable vastly more

time to be spent on this, with the aim of producing a top-class metapro-

gramming system. Specific thanks must be said to the members of the

Acute project at Cambridge and Rocquencourt whose use of Fresh O’Caml

has contributed much to its development.

Finally thanks must be given to my examiners, Robin Milner and Ian

Stark, who made many valuable comments and suggestions.

Contents

1 Introduction 1

1.1 Other approaches to handle binding 5

1.1.1 de Bruijn indices . 6

1.1.2 Threading of name states 7

1.1.3 Higher-order abstract syntax 8

1.2 Other related work . 10

1.3 Collaboration . 11

1.4 Thesis structure . 12

2 Fresh Objective Caml 13

2.1 Representation of object language names 13

2.1.1 Bindable names: typing 13

2.1.2 Bindable names: creation 15

2.2 Representation of object language binding 16

2.2.1 Abstraction values: construction 16

2.2.2 Abstraction values: typing 20

2.2.3 Abstraction values: deconstruction 21

2.2.4 Abstraction values: two sides of the same coin 25

2.2.5 Abstraction values: equality testing 25

2.3 Explicit atom-swapping . 27

2.4 Fresh-for test . 28

2.5 Something missing? . 28

2.6 Reference cells . 29

2.7 A full example . 30

2.8 Pretty-printing . 30

3 Mini-FreshML, operationally 35

3.1 Syntax . 35

3.2 Static semantics . 37

vii

viii CONTENTS

3.3 Dynamic semantics via big-step 40

3.4 Dynamic semantics via frame stacks 43

3.4.1 A termination relation 43

3.4.2 Relationship to the big-step semantics 46

3.5 Environment style semantics 50

3.6 Notions of observational equivalence 51

3.7 Correctness for Mini-FreshML 54

4 A domain theory for names 57

4.1 FM-sets, FM-cpos and FM-cppos 57

4.2 Some FM-cpos and their construction 62

4.2.1 Atoms, lifting, products and sums 62

4.2.2 Functions and function spaces 63

4.2.3 Abstraction FM-cppos 65

4.2.4 Some curiosities . 71

4.3 Fixed points . 72

4.4 Categorical constructions . 73

4.5 Solution of recursive equations on FM-cppos 77

4.6 FM-sets of syntax . 82

5 Mini-FreshML, denotationally 83

5.1 An overview . 83

5.1.1 Dynamic allocation monads 86

5.2 Definition of the denotational semantics 87

5.2.1 Denotation of types . 87

5.2.2 Denotation of expressions and frame stacks 87

5.3 Some properties of the semantics 94

5.3.1 Support and equivariance properties 94

5.3.2 Substitutivity properties 95

5.4 Computational adequacy . 95

5.4.1 Construction of the logical relations 96

5.4.2 Relational structures 97

5.4.3 Properties of the logical relations 106

5.4.4 Completing the proof 117

5.5 The road to equivalence . 122

5.6 Algebraic identities . 126

ix

5.7 Correctness of representation 127

5.7.1 Background theory . 127

5.7.2 Correctness results . 131

6 Implementation 137

6.1 Library, or bespoke system? 137

6.2 System overview . 139

6.3 Creation of fresh names . 140

6.4 Creation of abstraction values 141

6.5 Pattern-matching on abstraction values 141

6.6 Implementation of swapping 143

6.6.1 When to swap? . 143

6.6.2 How to swap? . 146

6.7 Preservation of sharing . 149

6.8 Freshness inference . 150

6.8.1 The motivation for a static analysis 150

6.8.2 Static semantics with freshness inference 152

6.8.3 Purity analysis . 156

6.8.4 A note on denotational semantics 157

6.8.5 An abstraction monad 158

7 Conclusions and future work 161

7.1 Future work . 162

7.1.1 Delayed permutations 162

7.1.2 Data structures and algorithms 166

7.1.3 Objects and modules 167

7.1.4 Reference cells . 168

7.1.5 Enhanced abstraction types 169

7.1.6 Standard library enhancements 171

7.1.7 Denotational semantics 171

7.2 And finally. 173

Bibliography 175

1 Introduction

‘Imagination is more important

than knowledge.’ —Einstein

THIS THESIS is about two things: names and metaprogramming.

Names are ubiquitous in the field of computer science and throughout

today’s networked world. Important elements of computer systems such as

files, disks, machines and networks are all identified by names. Programs

and machines often communicate over virtual ‘channels’ which are identi-

fied by names[34]. When writing programs, use is made of variables, file

handles, process identifiers and many other sorts of name in disguise.

All of these names may be divided[39, 35] into two varieties: pure

names and impure names. A name which is said to be pure is just a handle

on something. Given a pure name, we can inspect what it is referring

to and check to see if it is the same name as another. However, usually

that is all and no further operations are permitted. In contrast, an impure

name has some structure actually within the name which we can examine.

An example might be the electronic mail address mrs30@cam.ac.uk or the

Internet address of a computer, say 131.111.8.42. In each of these cases,

there is some user-visible structure to the name—in these examples, the

structure is defined by international standards. The names justify their

designation because they still refer to something: a mailbox and a computer

respectively.

This thesis deals with the use of pure names in metaprogramming sys-

tems. Metaprogramming is the art of constructing software which manip-

ulates the syntactic structures of other programs. There are many large-

scale examples in common use today: compilers, interpreters and theo-

rem provers being good examples. Metaprogramming can be homogenous,

meaning that the metaprogram is written in the same language as the pro-

gram being manipulated; or heterogeneous, meaning that these languages

1

2 1. Introduction

may differ. Sheard[58] provides a good survey of these and other issues in

metaprogramming.

We shall be particularly interested in possibly-heterogeneous metapro-

gramming in functional languages such as Haskell, Standard ML, Objective

Caml and so forth. These languages are particularly good for metaprogram-

ming due to a few salient features, of which the following two are arguably

the most important.

I User-defined datatypes and pattern-matching. It is straightforward to

represent the syntax of some target language (known as the object language)

by defining a datatype to represent the various shapes of syntactic structure

which occur in that language. Values of such datatypes are created by

parsing a program’s concrete syntax into abstract syntax[30]. A portion of

abstract syntax will likely be tagged to say what it is (a variable, a condi-

tional statement, etc.) and it may well contain smaller syntactic entities

within it. Functional programming languages make it easy to construct

values representing abstract syntax and then pick them apart again using

pattern-matching. These features tend to save a large amount of tedious

coding and help with the readability of metaprograms.

I Definition by structural recursion. Functional languages permit functions

over syntax to be defined by structural recursion[8]. Typically a program will

make use of such recursion to manipulate abstract syntax trees by traversing

through the various structures and performing different actions depending

on the type of entity encountered along the way. Many such transformations

can be captured using the idea of a catamorphism[31], a generalisation of

the traditional foldl and foldr functions over lists.

The writing of program-manipulating programs entails the writing of

name-manipulating programs. Otherwise, we would have to restrict our

attention to singularly uninteresting languages involving no notion of ‘name’

whatsoever. A prime concern in metalanguage design should therefore be

the provision of suitable facilities for manipulating names. On the surface

this might not seem a difficult problem: after all, names at first sight do not

appear to be particularly complicated things. In fact, they are not—it is the

operations in which they are involved which give rise to the complexities.

The specific complications which we shall deal with in this thesis are

those arising from the binding of names by language constructs. Here are

three short examples—one from mathematics, one from Objective Caml and

3

one from the λ-calculus[5]—which illustrate binding operations.∫ 1

0
f(x, y) dx an integral

let x = 42 in x ∗ x local declaration

λx. λy. x y function abstraction

Name binding is as ubiquitous as names are themselves and poses significant

problems for the representation of object language syntax. The nub of

the problem is that in pencil-and-paper practice—when designing syntax-

manipulating algorithms in the object language or maybe proving theorems

about them—we often identify bound names up to α-conversion. For ex-

ample, λx. λy. x y is α-convertible to both λx. λz. x z and λy. λx. y x.

This process of renaming variables to produce α-variants of terms is often

essential during the manipulation of syntax where terms may be substituted

into each other, or in other scenarios where there is a possibility of name

clashes. A classic example is the algorithm of capture-avoiding substitution

which is used in the definition of β-reduction for the λ-calculus. Free-and-

easy application of α-conversion during pencil-and-paper work captures the

idea that the particular bound names used should not somehow matter, so

long as they are kept suitably distinct from each other. This convention that

free and bound names should always be kept disjoint and distinct from each

other is often known as the ‘Barendregt variable convention’[5].

The mechanisation of algorithms which involve the manipulation of syn-

tax with binders is made difficult and time-consuming by the necessity to

incorporate code to handle these scenarios. In this thesis, we are concerned

with extending a functional programming language (Objective Caml) with

core features which assist these metaprogramming tasks. The resulting

language, Fresh O’Caml, provides for the generation of fresh names which

we can use to represent object language names which may be involved in

binding operations: such names will be referred to as bindable names. It also

assists us with the representation of object language binding constructs by

providing facilities to package up syntax trees using abstraction expressions.

When deconstructing the values of such expressions, the runtime system

ensures that names inside are freshened up accordingly to avoid clashes.

Additionally, some extra utility constructs are provided to increase the ex-

pressiveness of the language.

4 1. Introduction

Fresh O’Caml is the successor to the FreshML language[63, 49, 18]—a

design which yielded an interpretive system accepting a syntax based on the

Core language of Standard ML with added features for manipulating names.

Early versions of the language, now referred to as FreshML-2000, used a

complicated static type system[49] which was thought to be necessary to

enforce certain correctness properties. (We give a detailed discussion of this

type system in §6.8.) Later versions used a much-simplified type system,

which gave rise to more expressive versions of the language and finally led

onto the development of Fresh O’Caml and the subsequent deprecation of

the FreshML system. The FreshML interpretive system is now unsupported.

What properties are desirable of a name-manipulating solution for a

metaprogramming language? We believe the following aspects are impor-

tant. For each, we give a brief description of how Fresh O’Caml addresses

the issue.

I Simplicity. The solution should provide the essential functionality—the

generation of fresh names together with the construction and deconstruc-

tion of representations of object language syntax with binding—in the most

straightforward way possible. This assists the programmer who has to use

the facilities and the theorist who wishes to prove properties about them.

In Fresh Objective Caml we provide fairly general, first order support for

representing binding operations. The new facilities are straightforward to

understand and to use.

I Correctness. The additional facilities should have a solid mathematical

foundation, together with the necessary proofs, to make it convincing to a

user that the representations of syntax which they are using are in some

sense correct. In this thesis, we present a full proof of some correctness

properties of a core language Mini-FreshML which captures the essence of

Fresh O’Caml—showing how contextual equivalence classes1 of values and

expressions correspond in a certain way to α-equivalence classes of object

language syntax.

I Readability. Programs written using the new solution should bear a

good correspondence to the underlying algorithms. Firstly, there are the

usual software engineering arguments which we shall not delve into here.

1Two expressions are said to be contextually equivalent if they may be freely exchanged

within the source text of some enclosing program without affecting the program’s observable

results.

1.1. Other approaches to handle binding 5

Secondly, the sort of algorithms often encoded as metaprograms are typi-

cally developed on paper, often with some good theoretical foundation. It

is a desirable property of a metalanguage to be able to encode such algo-

rithmics so that the resulting metaprogram bears a good correspondence

to the original statement of the algorithm. As will be seen in the next

chapter, Fresh O’Caml programs encoding syntax-manipulating algorithms

often bear a close resemblance to descriptions of the algorithms themselves.

I Integration. New language constructs introduced by the solution should

integrate well with the existing language features, for example unbounded

fixpoint recursion. It is also desirable that the new language constructs

should fit into the existing typing system of the programming language in

order to ease implementation.

I Efficiency. The solution should be designed in such a way as to permit

efficient implementation. At the current time, the Fresh O’Caml implemen-

tation is at a sufficiently early stage to still be lacking in this area: however,

later on in this thesis we discuss the next avenues to be taken in order to

improve this.

This thesis provides detailed description and discussion of Fresh O’Caml,

along the way encompassing a whole spectrum of computer science. For

the pragmatist there is detailed discussion of the language itself—ranging

from a user’s perspective through to nitty-gritty details of the runtime system

implemented in C. For the theorist, we present a variety of domain theory

which is good for reasoning about names and name binding. This forms the

basis for a denotational semantics that is sufficiently powerful to establish

some strong correctness results about our language—and is also interesting

in its own right. But we must emphasise that we are strictly concentrating on

functional programming: whilst our work may well be of use in other areas

such as logic programming, we do not wish to embark on a moral crusade

suggesting that our approach to name binding is universally applicable.

1.1 Other approaches to handle binding

Approaches to the problem of name binding in metaprogramming languages

may be partitioned into two: first-order and higher-order. These desig-

nations correspond to the varieties of metalanguage constructs which are

used to represent object language binding constructs. The Fresh approach

6 1. Other approaches to handle binding

described in this thesis is first-order: object language binding constructs

are not represented by higher-order functions. Other first-order schemes

include both simple ones using textual representations of names and those

based on de Bruijn indices. In contrast, we have the various approaches

based on higher-order abstract syntax which all exploit the function ab-

straction constructs of the metalanguage in order to represent object-level

binding. Let us examine these differing approaches in more detail.

1.1.1 de Bruijn indices

An oft-cited means of tackling the problems of name binding is the use of

de Bruijn indices[11, 12, 17] in abstract syntax trees. This is a ‘nameless’

way of representing object-level syntax via the use of numbered binders:

rather than a language extended wholesale with new constructs, it is simply

a scheme of representation which can be used with a standard metapro-

gramming language. It concentrates on the shape of the binding structure

rather than on particular names. Instead of placing a bound name in a

syntax tree, we place an integer which identifies how many levels of binders

we should skip back over in order to find the one which binds at the point

of interest. For example, we could represent the term λx. λy. y x by the

nameless term λ. λ. 0 1. Note how names on the binders themselves become

redundant.

Whilst de Bruijn indices do indeed capture the idea that ‘actual names

of bound variables should not matter’, they are inconvenient in practice.

Code which manipulates nameless representations is likely to be difficult

to understand and maintain. One particular problem is that replacing one

subterm with another inside some larger term may in general result in the

de Bruijn indices having to be adjusted. Consider for example the following

code fragment, where the ellipsis stands for some large function body.

let f = fun x -> ... in

let g = fun y -> y + (f y) in

fun z -> (f, g)

We might wish to perform a transformation on this code fragment to inline

the function g, yielding the following.

let f = fun x -> ... in

fun z -> (f, fun y -> y + (f y))

1.1. Other approaches to handle binding 7

Let us consider using de Bruijn indices to represent these pieces of syntax.

Assuming that ‘let’ is a non-recursive binding construct, then a representa-

tion of the first fragment above could look like the following.

let _ = fun _ -> ... in

let _ = fun _ -> 0 + (1 0) in

fun _ -> (2, 1)

Applying the inlining transformation, we then obtain the following.

let _ = fun _ -> ... in

fun _ -> (1, fun _ -> 0 + (2 0))

Note that two extra things have had to happen here: firstly, the removal

of the binding for g means that the first component of the pair needs a de

Bruijn index adjusting. A similar thing happens in the second component,

where the inlining of the body of g has caused it to be in a different place

with respect to the various binders.

This simple example shows how a ‘nameless’ style of programming can

be difficult to work with. Fresh O’Caml provides a ‘nameful’ style, where

the programmer can gain access to concrete names whilst still having the

reassurances provided by capture-avoidance and freshness properties.

1.1.2 Threading of name states

Peyton-Jones and Marlow[41] present a good overview of the problems

surrounding name binding in the Glasgow Haskell Compiler inliner. Early

versions of that compiler blindly renamed every bound variable to a fresh

one in order to avoid problems of name capture. However, not only is this

inefficient due to the gratuitous ‘churning’ of names, as those authors put it,

but also cumbersome due to the lack of side-effecting constructs in Haskell:

some kind of name state must be threaded through all algorithms dealing

with the generation of fresh names. The authors describe how more modern

versions of the compiler cope with this by adapting algorithms such as those

for capture-avoiding substitution so they take note of all names currently in

scope. This enables the generation of fresh names to be minimised and there

is no gratuitous renaming. When a fresh name is required, a probabilistic

approach is used to (hopefully rapidly) find a suitable one.

8 1. Other approaches to handle binding

1.1.3 Higher-order abstract syntax

Unlike Fresh O’Caml, higher-order abstract syntax (HOAS)[43, 24] exploits

the function abstraction constructs of the metalanguage to represent object-

level binding, yielding another ‘nameless’ style of representation. As an

example, a HOAS representation of abstract syntax trees of the λ-calculus

could be written as

type lam = Lam of lam -> lam

| App of lam * lam;;

Whilst such an embedding at first seems to be rather elegant, it does not

fit well in the framework of a general-purpose functional programming

language. The good points about it are that capture-avoidance—and indeed

object-level substitution—come for free, by virtue of the properties of meta-

level function application. (Having said that, an argument that ‘object-level

substitution for free’ is highly desirable does not really hold its ground for

a language such as Fresh O’Caml, where such operations are easily defined.

See for example our code for capture-avoiding substitution in §2.2.3: it is

straightforward and fast to write.)

The serious concern about such declarations, however, is the contravari-

ant occurrence of the type lam. This means that the datatype is a mixed-

variance inductive definition, precluding the construction of functions over

it by the usual recursive techniques. For example, when specifying a trans-

formation over such a datatype using a catamorphism (say to pretty-print

terms using a function of type lam -> string) then one must also provide

the inverse anamorphism (in this case a function of type string -> lam,

which amounts to writing a parser).

Moreover there are sufficiently many elements of the function space

lam -> lam that many of them, when encapsulated inside lam’s construc-

tors, do not correspond to legal abstract syntax trees of the object language.

The ones that do not are the so-called ‘exotic terms’, for example:

let exotic = Lam (fun t ->

match t with Lam _ -> t

| App _ -> App (t, t));;

Whilst this is a typeable expression of type lam, it does not correspond to

the abstract syntax of any λ-term.

1.1. Other approaches to handle binding 9

Another unfortunate property of HOAS representations is that since a

value representing a term may contain computations at the binding points,

side effects will be delayed until the term is deconstructed via function

applications. This may not be in keeping with a strict metalanguage such as

Objective Caml.

In an attempt to deal with the problem of exotic terms there are type

systems[15] to restrict the values which may be passed as the arguments

to constructors such as Lam. These work by using the observation that

so long as the types of such constructors only admit suitably parametric

functions[69], then no exotic terms arise. However, such restrictions pro-

duce a technically-complex framework which still has inadequacies—as seen

in the conclusion of [15] where the authors note that an algorithm imple-

menting a simple structural equality test is not definable in their system.

Another alternative[14] is to adopt a ‘weak’ rather than the ‘strong’

HOAS embedding which we saw above. This yields type declarations such

as the following:

type lam = Lam of var -> lam

| App of lam * lam;;

for some type var of object language identifiers. This produces normal,

positive inductive definitions at the expense of doing away with object-level

substitution for free. We do, however, still retain the capture avoidance

properties which we desire. All begins to look rosy, but there is a further

difficulty: how does one define the type var? This needs to be suitably

abstract, in some sense, so that exotic terms (involving functions of type

var -> lam) cannot be created by case distinction on values of type var.

Suitable types for var can be defined, but this means that one cannot define

the algorithm for capture-avoiding substitution, for example.

It still seems to be the case that there exists no single, integrated solu-

tion based on higher-order abstract syntax that provides a full-scale name-

manipulating metalanguage along the lines of Fresh O’Caml. Previous work

by Miller[33] on an ML-style language MLλ equipped with function types

τ => τ ′ goes some way to remedy the situation, but again becomes somewhat

clumsy when it comes to defining functions by structural induction over

abstract syntax. Bindlib[53] provides a framework for manipulating abstract

syntax with binders in O’Caml, but it is not fully automatic since user-

10 1. Other related work

defined functions must be written for term construction. Another take on

the subject is the more recent work of Washburn and Weirich[70], who

(in addition to a nice survey of some of these problems) have shown how

one can enforce parametricity restrictions equivalent to those of [15] by

just using first-class polymorphism in Haskell. However, as those authors

identify, their approach still fails to provide any direct access to concrete

names.

So whilst HOAS has had nice applications, for example in the areas of

logic programming and theorem proving, the first-order approach presented

in this thesis does appear to be more suited for our target application area.

1.2 Other related work

In this section we provide a brief summary of some other work which is re-

lated in one way or another to that of our own. Much of this revolves around

the underlying permutation model of name binding in FM-set theory[20, 18]

upon which the FM-domain theory of Chapter 4 is based. This is not an

exhaustive list: other related work is cited later in the thesis where it fits

into the main flow of the text.

I Trees with hidden labels. The work by Cardelli et al.[9] on manipulating

trees with hidden labels must be singled out as having directly affected the

course of the FreshML (and thereafter Fresh O’Caml) language design. For it

was this work which led to the realisation that it was not necessary to worry

about certain side-effects of name generation which arise during the decon-

struction of values representing object language binding constructs. This led

to the deprecation of a complicated system of static analysis (discussed at

length in §6.8).

I Nominal unification. As we discussed in §1.1.3, there is a distinct split be-

tween Fresh O’Caml and HOAS-based approaches by virtue of Fresh O’Caml

representing binding using first-order constructs. This same division be-

tween first-order and higher-order approaches is apparent in the work[67]

by Urban et al. on nominal unification. In that setting, the problem is to

take two object-level terms involving binding and determine whether there

exists some substitution of terms for variables which makes the two original

terms α-equivalent. Those authors’ work is again based on the permutation

model of name binding, involving access to concrete names rather than us-

1.3. Collaboration 11

ing higher-order representations, and therefore draws on much of the same

theory as ourselves. The work shows how to produce a decidable, most-

general unification algorithm which operates on object-level terms involving

binding—and this is done without much of the awkwardness associated with

traditional higher-order unification problems.

I Logic programming. The work on nominal unification has led to a series

of papers on α-Prolog[10], an evolving variant of Prolog which draws on the

permutation model of name binding in order to manipulate abstract syntax.

It will be interesting to see in the future if that model can be made to fit a

logic programming setting as well as it fits a functional one.

I Theorem-proving. The implementation of theorem-proving technologies

is an important application of metaprogramming. The doctoral thesis of

Gabbay[18], which presents the full details of FM-set theory together with

a discussion of an early version of FreshML, includes a formalisation of FM-

set theory inside the Isabelle proof checker. Further discussion is available

elsewhere[19].

I Game semantics using FM-sets. Abramsky et al. have produced recent

work[2] which describes a fully-abstract model of the nu-calculus[65, 50,

66], based in a setting of game semantics. They exploit one of the key

properties of FM-set theory just as we do in this thesis: it enables all depen-

dencies on parameterising name sets to be made implicit. The work is of

particular interest since the nu-calculus is closely related to Mini-FreshML

(described in Chapter 3), albeit lacking in recursion.

I Term rewriting systems. Work by Gabbay et al.[16] has shown how both

first-order and higher-order term rewriting systems may be reformulated

into a first-order approach based on FM-set theory. As for Fresh O’Caml and

the work on nominal unification, a ‘nameful’ approach is adopted where

bound entities are explicitly named; the resulting rewriting systems respect

α-conversion of terms in the correct manner.

I Name management calculi. Recent work by Moggi and Ancona[4] presents

a monadic calculus for name management using ideas from FM-set theory.

1.3 Collaboration

Whilst the entirety of the actual text of this thesis has been written by the

author, we must say a few words about collaboration. This is an important

12 1. Thesis structure

part of all research and it is indeed the case that the work presented in this

thesis has benefited much from working with others.

Most of the current Fresh O’Caml language design2 and the entirety of

the software patch described in this thesis is the author’s own work. This

therefore covers the majority of the material in Chapters 2 and 6. The

material in Chapters 3 through 5 has been developed jointly with Pitts,

although the author was responsible for the majority of the proofs exhibited

here. The main two exceptions are the proof of Theorem 4.5.2, which is

standard but given here for completeness, and the proof of Lemma 5.4.9

which is mostly the same as one by Pitts[46, Theorem 4.16].

The above paragraph notwithstanding, where ideas have specifically

originated with others (or proofs have been reproduced for completeness)

then due credit is given in the text.

1.4 Thesis structure

This thesis consists of seven chapters, of which this is the first. In the

next chapter, we describe the extensions to Objective Caml which consti-

tute the Fresh O’Caml language. Chapter 3 then proceeds to formalise a

small language which provides the core features of Fresh O’Caml. Two

styles of operational semantics, which we prove equivalent, are provided

to explain the evaluation strategy of the language. In Chapter 4, we lay the

groundwork for a theoretical treatment by providing a variant of classical

domain theory specially designed for modelling names. Chapter 5 presents

a denotational semantics using this domain theory. It then proceeds to

derive observational equivalence results to show in what sense the repre-

sentations of object language terms are correct. In Chapter 6, we discuss

implementation details. Finally in Chapter 7 we survey future work and

draw conclusions.

2The Fresh parts, that is, using the language described in [49] as a starting point: the

design of the core O’Caml language is due to the team at INRIA Rocquencourt, to whom we

are very grateful.

2 Fresh Objective Caml

‘A programming language is a tool

that has profound influence on

our thinking habits.’ —Dijkstra

WE NOW BEGIN to describe the Fresh Objective Caml language in detail,

using examples along the way to illustrate the new language constructs.

From this point onwards we assume that the reader is familiar with the stan-

dard O’Caml language, from whose distribution the Fresh Objective Caml

system1 is derived. In order to comply with the licence terms of O’Caml, the

modifications are distributed as a patch bundled together with a modified

configure script which silently applies the patch when the distribution is

built for the first time. The modifications to the system which form the

patch are distributed under a BSD-style licence.

2.1 Representation of object language names

The first aspect which we examine is the typing and dynamic creation of

values which represent object language bindable names.

2.1.1 Bindable names: typing

So what types should be assigned to identifiers representing object language

bindable names? An initial attempt might be to have a single metalanguage

type, perhaps called name, for this purpose. However, this is not particu-

larly satisfactory since it would be nice to be able to distinguish between

different varieties of names which may occur in object language syntax. For

example, when representing types and terms of the polymorphic lambda

calculus[22, 54, 23, 55] (PLC) we will need to represent type variables and

1Available from http://www.fresh-ocaml.org/, together with example programs by

the author and others.

13

14 2. Representation of object language names

term variables—both of which may take part in binding operations at the

object level. If we can distinguish between these varieties of names at the

meta level (that is, in the source text of some Fresh O’Caml program), then

the compiler will be able to enforce stronger static checks on our source text

during type-checking.

Given multiple varieties of names it is desirable to have polymorphism

over these varieties. For example, we shall see later that there exists a Fresh

O’Caml construct swap a and a′ in e, where a and a′ must be of the same

type of names and e is some expression. If we wish to construct a function

such as

let map_swap a b = map (fun x -> swap a and b in x);;

then we should be able to assign polymorphic types to the function param-

eters in such a way as to constrain them to be of a type of names—and

furthermore, of the same type of names.

The best solution to this problem would be to declare some variety of

type class whose members are those types which represent bindable names.

However, since neither Standard ML nor O’Caml provide such Haskell-style

type classes[42] we were forced to adopt an alternative strategy.

The first attempt at a solution was implemented in the FreshML inter-

pretive system based on Standard ML. This provided for multiple types of

bindable names using the bindable type declaration. For example,

bindable_type var;

introduced a new type constructor of zero arity called var which could be

used to represent a certain variety of bindable names. Multiple such declara-

tions could be issued within the source text. Then, a subclass of the equality

type variables2 was created known as the bindable type variables. These were

named ’@a, ’@b etc. and provided polymorphism in the desired manner. For

example, the FreshML equivalent of the above function map swap would be

typed as follows.

map swap : ’@a -> ’@a -> ’b list -> ’b list

During the transition to the newer Fresh O’Caml system a rethink was re-

quired, for Objective Caml does not provide the notion of classes of type

2Another example of the poor-man’s type class.

2.1. Representation of object language names 15

variables. Instead, we use a single polymorphic type ’a name and subsume

polymorphism over the different kinds of name under the usual mechanisms

for polymorphic types. In order to produce types corresponding to specific

varieties of name, for example names of variables and names of type vari-

ables in PLC, we use generative type declarations as follows.

type t and var = t name;;

type t and tyvar = t name;;

In Fresh O’Caml, map swap now receives the following type.

map_swap : ’a name -> ’a name -> ’b list -> ’b list

2.1.2 Bindable names: creation

Initially, there exist no values of any bindable type. To create them, one

simply uses the fresh expression:

let x = fresh;;

val x : ’a name = name_0

This declares a new identifier x and assigns a fresh atom to it. We shall learn

rather more about atoms later in this thesis, but for the moment let us just

observe that they are the semantic values corresponding to bindable names.

No matter what type of bindable names is involved, the atoms are drawn

from the same global set at runtime3.

Values of bindable type are printed as name 0, name 1 etc.; this number-

ing is on a ‘per-response’ basis in the same manner as the usual method for

renaming type variables to start from ’a on each response. The actual atoms

which are assigned to identifiers of bindable type are completely concealed

from the programmer (rather like the way in which the actual addresses of

reference cells are concealed in O’Caml).

Having made the above declaration, we could use the identifier x to

represent an object language bindable name. If no explicit type annotations

are provided by the programmer then the name is assigned a polymorphic

type, in this case ’a name.

3Writing A for the countably infinite set of atoms and Aτ for the set of values of type

τ name, what we are effectively doing is setting up an isomorphism between A and the

disjoint union of the Aτ , as τ ranges over the Fresh O’Caml type expressions.

16 2. Representation of object language binding

In the following fragment of an interactive session we specify an explicit

type annotation for the new name.

let (x:var) = fresh;;

val x : var = name_0

From the programmer’s point of view, the only thing which may be done

with an atom after creation is to test whether it is the same as another. In

particular, there is no ordering on atoms to be consistent with the underlying

FM-set theory[20]. Problems which arise as a consequence of this restriction

are discussed in §7.1.2.

2.2 Representation of object language binding

In order to represent object language binding constructs Fresh O’Caml uses

abstraction values, written <<v>>v′ for values v, v′. Such values are assigned

abstraction types <<τ>>τ ′ (for types τ , τ ′) and may be constructed using the

abstraction-former <<e>>e′ (for expressions e, e′). The type τ will usually be

a type of bindable names, but it may in fact be any type whose values are

comparable (such as an algebraic datatype).

2.2.1 Abstraction values: construction

When we write an abstraction expression <<e>>e′ in a piece of Fresh O’Caml

code, we are telling the compiler that we wish to represent a piece of object

language binding. We say that the expression between the double angle

brackets is in binding position and use the same convention for abstraction

values and abstraction types. At runtime, evaluation of e′ yields the value

representing the body of the abstraction whereas evaluation of e yields that

which corresponds to the bound identifier(s). (Often, e will just evaluate

to a single atom, but expressions of more complicated types are permitted

in binding position as we noted above.) The evaluation of e must yield a

value that is comparable (in the Standard ML setting this corresponds to e

having an equality type). Failure to adhere to this condition raises a runtime

Invalid argument exception. We say a little more about this in §2.2.5.

In a programmer’s Fresh O’Caml source code, abstraction types are most

likely to arise within type declarations corresponding to object language

2.2. Representation of object language binding 17

syntax trees. Here we shall continue our running example of the polymor-

phic lambda calculus (PLC) by providing a suitable declaration to represent

syntax trees corresponding to types and terms of that calculus:

type typ = TYvar of tyvar

| TYfn of typ * typ

| TYforall of <<tyvar>>typ;;

type term = Tvar of var

| Tlam of typ * (<<var>>term)

| Tgen of <<tyvar>>term

| Tapp of term * term

| Tspec of term * typ;;

We can see that abstraction types have been used in those places where we

wish to represent some object-level binding. It is now a straightforward

matter to create some syntax trees. For example, consider the PLC terms

t1
def= Λα. λx : α. λy : α. x

t2
def= Λα. λx : α. λx : α. x

t3
def= Λα. λx : α. λy : α. y.

We can encode the terms in a Fresh O’Caml interactive session as shown in

Figure 2.2.1. Note how straightforward it is to encode the binding in the

object language terms: abstraction type-formers are tightly integrated with

the other type constructors used in algebraic datatypes and the correspond-

ing values are structurally similar to the original PLC terms. It is in fact the

case that a Fresh O’Caml datatype is still said to be algebraic just when it

does not involve any occurrences of the function space constructor ->: it

therefore does include those datatypes involving abstraction types in their

construction.

Also, observe how the system numbers the bindable names on a ‘per-

response’ basis as mentioned in §2.1.2. We can see from this example that

the numbering is particularly useful to highlight the object-level binding

inside each term.

In case the reader is wondering, we take the time now to identify that

the abstraction-forming expression <<–>>– is not a binding construct—unlike

in an approach based on higher-order abstract syntax where function ab-

straction is used to represent object-level binding. Similarly, abstraction

18 2. Representation of object language binding

let alpha, x, y = fresh, fresh, fresh;;

val alpha : ’a name = name_0

val x : ’a name = name_0

val y : ’a name = name_0

let t1 = Tgen(<<alpha>>(Tlam(TYvar alpha,

<<x>>(Tlam(TYvar alpha, <<y>>(Tvar x))))));;

val t1 : term = Tgen <<name_0>>(Tlam (TYvar name_0,

<<name_1>>(Tlam (TYvar name_0,

<<name_2>>(Tvar name_1)))))

let t2 = Tgen(<<alpha>>(Tlam(TYvar alpha,

<<x>>(Tlam(TYvar alpha, <<x>>(Tvar x))))));;

val t2 : term = Tgen <<name_0>>(Tlam (TYvar name_0,

<<name_2>>(Tlam (TYvar name_0,

<<name_1>>(Tvar name_1)))))

let t3 = Tgen(<<alpha>>(Tlam(TYvar alpha,

<<x>>(Tlam(TYvar alpha, <<y>>(Tvar y))))));;

val t3 : term = Tgen <<name_0>>(Tlam (TYvar name_0,

<<name_2>>(Tlam (TYvar name_0,

<<name_1>>(Tvar name_1)))))

Figure 2.1: Encoding some PLC terms in Fresh O’Caml.

values do not bind atoms. We can illustrate that <<–>>– is not a binder by

considering the Fresh O’Caml expressions

<<x>>z and <<y>>z

where x, y and z are distinct value identifiers of bindable type. The two

expressions would be contextually equivalent if the abstraction-former were

a binding construct. However, we can see that it is not by distinguishing the

two expressions using the following context:

let x = fresh in let y = fresh in let z = x in [–].

At runtime x will be assigned some fresh atom, a1 say. The same happens

for y: call the corresponding atom a2. Then, z will be mapped to a1 in the

current environment and thus the two semantic values to which <<x>>z and

<<y>>z evaluate are <<a1>>a1 and <<a2>>a1 respectively, which are clearly

not contextually equivalent.

2.2. Representation of object language binding 19

The important correctness property of Fresh O’Caml expressions4 and

values of datatypes such as term is that

their contextual equivalence classes are in bijection with the

α-equivalence classes of the object language terms.

After some work, we shall formally state and prove such a result for a small

language Mini-FreshML later in this thesis. Later in this chapter we shall

see how this result enables the testing of object level α-equivalence to be

subsumed under the usual mechanisms for structural equality testing in

Fresh O’Caml.

How much support for specific patterns of binding should the language

provide? The current version of Fresh O’Caml described here takes a rather

‘hands-off’ approach, in the sense that it provides a single construct (the

abstraction expression) which can be used in many different situations. But

suppose we were dealing with an object language providing let-expressions

which may bind multiple identifiers at once, as illustrated in the following

code skeleton. The let-bindings may be mutually recursive if marked with

rec; if not, the bindings are non-recursive.

let rec x1 = ...

x2 = ...

in

foo (x1, x2);;

Let us think about the binding forms we have here. If the let is to be non-

recursive, then the relevant fragment of a Fresh O’Caml type declaration

called term to represent such syntax would be something like:

Elet of term list * (<<var list>>term)

for some type of bindable names var corresponding to object language

identifiers. Note how we use a more complicated abstraction type in order

to signify that we want to represent the simultaneous binding of multiple

identifiers. The term list part corresponds to the right-hand side of the

various let-bindings and the scope of the object-level binding is therefore

reflected in the type of the constructor argument. More specifically, the

4Not involving side-effects from references, exceptions and the like.

20 2. Representation of object language binding

various identifiers introduced in the let are not bound within the first

component of the pair.

If the binding is recursive, however, this scheme is somewhat unsatis-

factory. For in this case, the scope of the identifiers must include the let-

bindings themselves. In this case, the constructor declaration should look

like this:

Elet of <<var list>>(term list * term)

Now, whilst this could be used to produce a correct (in some sense) rep-

resentation of the above object language syntax, the question arises as to

whether Fresh O’Caml should provide a more specific binding form which

could be useful here. For there is nothing currently to stop the programmer

erroneously constructing a value where the lengths of the var list and

term list parts are different. One solution, of course, would be to use

a dependently-typed language: alternatively, we could introduce further

binding forms into Fresh O’Caml to cope with such a situation.

Our view is that whilst more specific forms would be desirable in certain

situations in order to increase the potential for stronger static checks, the

aim of Fresh O’Caml should be to provide a general framework for handling

name binding. As we noted in Chapter 1, there is something pleasing about

keeping new constructs simple and straightforward from both a user’s and

a compiler writer’s point of view. Once one starts down the road of incor-

porating somewhat ‘subsidiary’ features into the language, there is a danger

that it will become over-complicated. For example, if we were to incorporate

specific constructs to handle the above situations then how about one which

allows mixed recursive/non-recursive bindings too? Finally, it should not be

forgotten that our extensions to O’Caml are based on a solid mathematical

foundation: multitudinous language constructs do not help to keep the

theory and the implementation in step and often just work to obscure the

real crux of the matter in the mathematics.

2.2.2 Abstraction values: typing

Given expressions e and e′ of types τ and τ ′ respectively then the abstrac-

tion expression <<e>>e′ simply has type <<τ>>τ ′. In other words, the type

inference algorithm functions in exactly the same way as for pair types.

2.2. Representation of object language binding 21

2.2.3 Abstraction values: deconstruction

So what can we actually do with an abstraction value after creation? Such

a value can be thought of as a ‘black box’ whose innards may only be

examined via one specific means of deconstruction: matching against an

abstraction pattern. The lack of any other means of inspecting abstraction

values ensures that they may only be deconstructed in such a way as to

maintain the Barendregt variable convention. As a result, the programmer

can write syntax-manipulating code without having to worry about possible

name clashes5.

Let us see some concrete examples. Here is a function, defined by

structural recursion in the usual manner, which performs capture-avoiding

substitution of the term t for the variable x throughout the PLC term t’.

let rec subst t x t’ =

match t’ with

Tvar y -> if x = y then t else t’

| Tlam (ty, <<y>>t’’) -> Tlam (ty, <<y>>(subst t x t’’))

| Tgen (<<a>>t’’) -> Tgen (<<a>>(subst t x t’’))

| Tapp (t1, t2) -> Tapp (subst t x t1, subst t x t2)

| Tspec (t’’, ty) -> Tspec (subst t x t’’, ty);;

We can see the abstraction pattern-matches in the Tlam and Tgen cases:

they are written <<pat>>pat ′ for sub-patterns pat and pat ′. But what are

these magic patterns actually doing, and why should this function imple-

ment capture-avoiding substitution? To understand this, first suppose that

the function subst is presented with arguments arising from the following

function application:

subst (Tvar y) x

(Tlam (TYvar alpha, <<y>>(Tapp (Tvar x, Tvar y))));;

The result of this should correspond to the open term (λy : α. x y)[y/x], that

is λz : α. y z. The Fresh O’Caml system responds as follows, which provides

sufficient information to check that no variable capture has occurred.

Tlam (TYvar name_0,

<<name_2>>(Tapp (Tvar name_1, Tvar name_2)))

5Really atom clashes, in fact.

22 2. Representation of object language binding

We now explain how the system has come up with this answer. When

the function subst is invoked as above, the second clause of the pattern-

match succeeds (against a data value with constructor Tlam). However,

before the body of the match clause is invoked then the system ensures that

the atom in binding position (mapped to by the identifier x and occurring

throughout t’’) is sufficiently fresh for the current environment. In the

current implementation6, an unused atom is chosen every time such a match

is taken. This will be assigned to the identifier x and then the term t’’ will

be constructed from the original body of the abstraction value (contained

within t’) in such a way that the new atom (call it a′) appears in all of the

positions where the original atom (call it a) did.

In order to perform the change of atoms we use an operation of swap-

ping, otherwise known as transposition, to exchange a and a′. Later in this

thesis we will see why swapping, rather than just renaming, is used.

The upshot of all of this is that the Barendregt variable convention is

enforced across abstraction pattern-matches: when the programmer gets

hold of the innards of an abstraction value after such a match then it is guar-

anteed that any atoms in binding position inside will be suitably fresh. This

in turn implies that name clashes will not occur, so long as the programmer

has correctly indicated object-level binding in their type declarations.

Another illuminating example is to consider two functions which attempt

(somewhat inefficiently!) to calculate the free and bound variables of a PLC

term. We assume the presence of a function

remove : ’a -> ’a list -> ’a list

which removes an element from a list.

let rec free_vars t =

match t with

Tvar x -> [x]

| Tlam (ty, <<x>>t’) -> remove x (free_vars t’)

| Tgen (<<a>>t’) -> free_vars t’

| Tapp (t1, t2) -> (free_vars t1) @ (free_vars t2)

| Tspec (t’, ty) -> free_vars t’;;

6See §6.6.1 for possible optimisations in this area.

2.2. Representation of object language binding 23

let rec bound_vars t =

match t with

Tvar x -> []

| Tlam (ty, <<x>>t’) -> x :: (bound_vars t’)

| Tgen (<<a>>t’) -> bound_vars t’

| Tapp (t1, t2) -> (bound_vars t1) @ (bound_vars t2)

| Tspec (t’, ty) -> bound_vars t’;;

Both of these functions are typeable in Fresh O’Caml, and the first is indeed

a bona-fide function to calculate the free variables of a term. However, the

second function should make the astute reader slightly uneasy. Indeed, we

claim that it should be impossible to write a function which really does

‘calculate the bound variables of a PLC term’. This should not be pos-

sible because Fresh O’Caml’s correctness property (viz. §2.2.1) prevents

us from distinguishing between the encodings of representatives from the

same α-equivalence class of PLC terms. The function bound vars is well-

defined, however, because Fresh O’Caml provides fresh atoms upon each

successful abstraction pattern-match. Therefore successive applications of

the bound vars function (even on the same terms) will always return dis-

tinct lists of atoms, whereas applications of the free vars function on the

same term will always return the same list of atoms.

(bound_vars (Tlam(TYvar alpha, <<x>>(Tvar x)))) =

(bound_vars (Tlam(TYvar alpha, <<x>>(Tvar x))));;

- : bool = false

This example clearly illustrates how the procedure of matching against ab-

straction patterns has observable side-effects (in a manner analogous to the

evaluation of ref expressions, which create new cells in Objective Caml).

The older FreshML-2000 language included strict typing constraints which

meant that programs such as bound vars—which allow the user to observe

such effects—would be ruled out. However, this system was found to be too

restrictive: we explain why in §6.8. Luckily, the old belief that these restric-

tions were needed to enforce the desired correctness properties turned out

(after some time!) to be incorrect.

Given that Fresh O’Caml permits more general abstraction types than

<<name>>τ , we should say a few words about pattern-matching on such

values. To do this we must introduce the notion of the algebraic support

24 2. Representation of object language binding

of a value, which captures the idea of ‘the atoms involved in the value’s

construction’. Formally, it is an approximation to the least finite support

of the denotation of the value—a notion we will introduce in Chapter 4.

Indeed, the algebraic support of some value and the least finite support of

its denotation will coincide so long as the value is comparable. If it is not,

the algebraic support will be no smaller than the least finite support of the

value’s denotation.

Intuitively, the algebraic support of some value will correspond to the

free variables of the object language term which is encodes. It is calculated

by a simple structural recursion: for example, the algebraic support of an

atom a is just the singleton set {a} whilst the algebraic support of a pair

(v, v′) is the union of the algebraic supports of v and v′. Given an abstrac-

tion value <<v>>v′ then the algebraic support is calculated as the algebraic

support of v′ minus the algebraic support of v. In the case of function

values, we have to make an approximation since the least finite support

of the denotation of such a value is formally undecidable7: it suffices to

take the union of the algebraic supports of the free variables of the function.

Note that even though there is contravariance present when calculating the

algebraic support of an abstraction value, this preserves the approximation

since only comparable values are permitted in binding position.

Returning to the pattern-matching algorithm, consider a value <<v>>v′

of type <<τ>>τ ′ which we wish to match against a pattern <<x>>x′. The

identifier x′ should be assigned the value produced from v′ by freshening

up any atoms therein which also occur in the algebraic support of v. Having

generated sufficiently many fresh atoms, this new value is generated by a

simple structural recursion over the structure of v′, assigning fresh atoms at

the correct points by means of swappings. The same swappings are used

throughout the value v to generate the value mapped to x.

Fresh O’Caml also allowes nested abstraction patterns. For example, we

could match against a value of type <<name>>(<<name>>τ) using a pattern

of the form <<x>>(<<x′>>x′′). We shall not delve here into the exact al-

gorithm used to decompose such complex matches, but defer the discussion

until §6.5. From the programmer’s point of view, the results are as expected:

each abstraction is freshened up accordingly.

7We state exactly why in §6.8.1, where we also hit the same problem.

2.2. Representation of object language binding 25

We can now understand the important property8 that abstraction values

are easy to construct, but harder to deconstruct. From an implementation

point of view, we may also read ‘fast’ for ‘easy’ as we shall see later in this

thesis (Chapter 6).

2.2.4 Abstraction values: two sides of the same coin

We have now seen that abstraction values do indeed provide a form of en-

capsulation and prevent potentially unsafe deconstruction. However at the

same time they do have concreteness properties. For when we pattern-match

against an abstraction value, we obtain value identifiers mapping to specific

(carefully-chosen!) atoms with which to work. From practical experience,

this delicate combination of abstractness and concreteness provides the best

of both sides of the coin.

This is exemplified by the fact that the evaluation of an abstraction

expression <<e>>e′ follows exactly the same pattern as a pair expression

(e, e′). Both e and e′ are evaluated in the current environment and simply

paired together to form the corresponding value.

2.2.5 Abstraction values: equality testing

Given two abstraction values <<v1>>v2 and <<v′1>>v
′
2, we need to be able

to determine when these two values are (structurally) equal. This is not an

entirely trivial question to answer so we start with an example and some

motivation.

We have already seen that the contextual equivalence classes of the val-

ues of types such as term can be proved to coincide with the α-equivalence

classes of object level terms. It follows that given the values t 1 through

t 3 from §2.2.1 then we can check whether they represent α-equivalent PLC

terms just by testing them for equality in Fresh O’Caml:

t1 = t2;;

- : bool = false

t1 = t3;;

- : bool = false

t2 = t3;;

8For the purposes of this statement, equality testing on abstraction values classes as a

deconstruction. We discuss this in §2.2.5.

26 2. Representation of object language binding

- : bool = true

Very neat. However, what we are really seeing is an illusion which Fresh

O’Caml presents to the programmer. At some particular point in time, a

particular abstraction value will be some particular representative of the

corresponding α-equivalence class (of values identified up to renaming of

atoms in binding position). However, which particular representative exists

at any point in time may only be determined by the runtime system and not

by the programmer. It is thus necessary to take great care in this discussion

between meta-level equivalence as exposed to the programmer and ‘identity’

of values as seen by the runtime system. After all, here we are defining how

to manufacture the test for meta-level equivalence given the lower-level op-

eration of a simple structural comparison9 on values. Therefore, during the

following discussion we reserve use of the word equality for that operation

invoked by = in Fresh O’Caml. We shall use the word identity for no-frills

structural identity on values—the testing of values for equivalence when not

working up to renaming of atoms in binding position. In particular, a value

<<v1>>v2 is identical to another <<v′1>>v
′
2 just when v1 is identical to v′1 and

v2 is identical to v′2.

The process of testing two abstraction values for equality attempts to

determine if the two values belong to the same equivalence class of values

modulo α-conversion of atoms in binding position. In order to do this, we

determine if there exists a pair of swappings of these atoms with fresh ones

which respectively map the bodies of each abstraction onto two structurally

identical values. Which representative of the equivalence class we end up

with is irrelevant: what matters is whether such mappings exist or not. The

problem is rather reminiscent of unification.

To see the algorithm in full detail, let us consider the case where the

value in binding position is a single atom. Say the abstraction values to be

compared are <<a1>>v1 and <<a2>>v2, where a1 and a2 are atoms and v1

and v2 are values of the same type. In order to test for equality, the types

of the two abstraction values should match: indeed these two values are

both of type <<name>>τ , for some type of bindable names name and where

v1 and v2 are both of type τ . Choosing a fresh atom a3, we can produce two

swappings (permutations) of atoms: π1 will swap a1 and a3; π2 will swap

9Think memcmp if you like C.

2.3. Explicit atom-swapping 27

a2 and a3. Then, the original two abstraction values will be equal iff the

value obtained by recursively applying the permutation π1 throughout the

value v1 is structurally identical to that produced by applying π2 throughout

v2. Morally speaking, we are comparing the whole of the values minus the

positions in which bound atoms occur: since in practice we have to compare

the whole values then we force comparisons to succeed at these points by

ensuring that the same (fresh) atoms occur at such positions in both values.

So far we have only considered abstraction values binding a single atom.

Suppose instead we wish to test two values <<v1>>v2 and <<v′1>>v
′
2 for

equality, where v1 and v′1 are of the same complicated type. In this case,

we traverse the structure of the values v1 and v′1 in the same order for

each to yield their algebraic supports as lists [a1, . . . , an] and [a′1, . . . , a
′
n]

respectively. We then require the lengths of these lists to be equal. Then

we allocate as many fresh atoms as a list [c1, . . . , cn] as there are in the

support of v1. Next, we swap each ai with ci throughout v1 and see if the

resulting value is identical to that obtained by swapping each a′i with ci

throughout v′1. Assuming this is the case, the abstraction values are deemed

equal if swapping each ai with ci throughout v2 yields a value identical to

that obtained by swapping each a′i with ci throughout v′2.

It is necessary to traverse the values v1 and v′1 in the same order and to

then use a list (rather than a set) to store the result so that we correctly

capture the positions of the various atoms throughout the syntax trees.

For example, consider testing <<[a, b]>>(a, b) against <<[b, a]>>(b, a).

These values are indeed equal. The algebraic supports of the two values

in binding position must be enumerated and stored in order as [a, b] and

[b, a] (rather than say [a, b] and [a, b]) so that the swappings correctly lead

to equal values.

As we noted before, a consequence of this algorithm is that any type in

binding position (inside an abstraction type <<τ>>τ ′) must be one whose

values are comparable. For example, attempting to test equality on values

of type <<τ → τ ′>>τ ′′ will fail with a runtime Invalid argument exception.

2.3 Explicit atom-swapping

The linearity constraint on O’Caml patterns which forbids multiple occur-

rences of the same variable within a single pattern means that it is not possi-

28 2. Something missing?

ble to write a match of the form match t with (<<a>>x, <<a>>y) -> ...

where multiple abstraction values are deconstructed using the same fresh

atoms. Not only are such pattern-matches required in order to encode

certain bijections which hold in the underlying FM-set theory (for example

between <<’a name>>’b * <<’a name>>’c and <<’a name>>(’b * ’c)),

but they have also been found to be necessary during practical work[21]

with the language. To simulate the effect of such non-linear patterns, Fresh

O’Caml provides an expression which explicitly swaps all occurrences of

two atoms inside a given value. This allows the simulation of a non-linear

matching as follows, using the above isomorphism as an example:

let f t = match t with

(<<a>>x, <>y) -> <<a>>(x, swap a and b in y);;

2.4 Fresh-for test

The boolean-valued language construct e freshfor e′ is true iff e is of

a type of names and evaluates to an atom which does not occur in the

algebraic support of the value to which e′ evaluates. Recalling that the

algebraic support of a Fresh O’Caml representation of some object language

term corresponds to the set of free names in that term, we see that the

fresh-for test provides a built-in function to calculate such free names.

2.5 Something missing?

Readers who are familiar with previous work using permutation models of

name binding[49, 20, 18] may be wondering where the notion of concretion

has got to. Concretion is the action of taking an abstraction value10 together

with an atom fresh for the body and returning the body with this atom

replacing the existing atom in binding position throughout. (This will be

formalised in due course—see Lemma 4.2.28.) We write v @ a to mean the

concretion of the value v at the atom a.

For example, the abstraction value <<a>>(a, b) (where a, b are atoms)

may be concreted at an atom c 6= a, b to yield the result (c, b). The atom

which we pick must not occur in the body in order to guarantee that no

name clashes will occur. It is in fact the case that the concretion v @ a of

10For simplicity, we consider this to have only a single atom abstracted.

2.6. Reference cells 29

an abstraction v = <<a′>>v′ (with a single atom abstracted) at the atom a

is given by the result of swapping all occurrences of a and a′ throughout

v′. It is therefore superfluous to incorporate both concretion and explicit

atom-swapping; we have chosen the more general explicit swapping.

2.6 Reference cells

The interactions between reference cells and the model of name binding

employed by Fresh O’Caml may be surprising to the reader. For the address

of a reference cell is treated as being pure—that is to say, it is treated as

containing no atoms. It follows that any swapping operations on the address

of the cell will not have any effect—in particular, the contents of the cell are

unchanged.

We can illustrate the semantics with the following code fragment, which

always produces the result false11:

let a = fresh;;

let x = <<a>>(ref a);;

match x with <<a’>>a’’ -> a’ = !a’’;;

Compare this to the following fragment, which always produces true:

let a = fresh;;

let x = <<a>>a;;

match x with <<a’>>a’’ -> a’ = a’’;;

This semantics for swapping operations on reference cells is theoretically

straightforward, but perhaps pragmatically unsatisfactory. In particular, it

is likely to hinder the implementation of efficient algorithms based on the

use of mutable cells. For even if a data structure only employs references

for efficiency (as opposed to creating cyclic graphs, for example) then we

will still hit the problem that abstraction values do not appear to ‘bind’

through the references. A specific example which could hit this problem

would be the usual techniques of destructive unification which are employed

when implementing efficient type inference algorithms. (Here, we might

11As of the time of writing (February 2005), there is a bug in the released versions of the

Fresh O’Caml system which causes incorrect results when using reference cells. This will be

fixed in the near future.

30 2. Pretty-printing

implement type variables as reference cells which may either contain a

pointer to the type unified with that variable, or alternatively a bona-fide

type variable identifier.) Whilst one could argue that the current treatment

of references is morally the correct one12, we feel that from a pragmatic

perspective it is not the best thing to be doing. However, any solution is

not straightforward: as we shall see in §7.1.4 it would not be correct just to

allow abstractions to bind unchecked through reference cells.

2.7 A full example

As a more complete example of the use of Fresh O’Caml, Figures 2.2 and 2.3

present a complete type-checker for the polymorphic lambda calculus. We

hope that the reader agrees that the code has a certain elegance about it.

2.8 Pretty-printing

We have seen how Fresh O’Caml allows access to concrete names. This

gives rise to the problem that a very limited set of operations are provided

to manipulate such names. In particular, there appears to be no straightfor-

ward way to somehow tag a name with a textual string—as one would want

to do in order to pretty-print syntax trees or to report error messages, for

example. Many potential applications of Fresh O’Caml (compilers, theorem

provers, etc.) receive user input and it is obviously desirable to maintain as

many of the user’s textual names as possible. (We might extend them with

numeric tags: this might be necessary if fresh atoms representing the name

have been generated to prevent a capture.)

At first it might seem that the correct way forward is to represent object

language names by (atom, string) pairs. However this soon breaks down

because the string is unaffected by any swappings applied to the pair, mean-

ing that the correspondence can become garbled. James Leifer at INRIA

Rocquencourt pointed out to us that the solution is to instead tag the binding

points in the object language syntax trees with the original textual names.

These will correspond to those nodes in the syntax trees where abstraction

types feature. When such a syntax tree node is deconstructed at runtime

we obtain a fresh atom and can then pick a textual name for it based on

12References are, after all, part of the ‘awkward squad’ as Peyton-Jones puts it[40].

2.8. Pretty-printing 31

type t and var = t name;;

type t and tyvar = t name;;

type typ = TYvar of tyvar

| TYfn of typ * typ

| TYforall of <<tyvar>>typ;;

type term = Tvar of var

| Tlam of typ * (<<var>>term)

| Tgen of <<tyvar>>term

| Tapp of term * term

| Tspec of term * typ;;

exception Arg_type_mismatch;;

exception Bad_application;;

exception Bad_specialisation;;

exception Not_typeable;;

exception Unbound_var;;

let rec lookup_env env x =

match env with

[] -> raise Unbound_var

| ((x’, ty)::_) when x = x’ -> ty

| (_::env’) -> lookup_env env’ x;;

let rec extend_env env x ty = (x, ty) :: env;;

Figure 2.2: Typechecker for PLC: part 1.

the original user’s name. (Names which were free in the first place may

simply use the technique described in the previous paragraph, as they will be

unaffected by the side-effects arising from the deconstruction of abstraction

values.) We now present a further enhancement to this technique. For this

example we keep the object language simple and just use the terms of the

untyped λ-calculus, inductively defined by the following grammar:

t::=x | λx. t | t t.

32 2. Pretty-printing

let rec ty_subst ty’ a ty =

match ty with

TYvar a’ when a = a’ -> ty’

| TYvar _ -> ty

| TYfn (ty1, ty2) -> TYfn (ty_subst ty’ a ty1, ty_subst ty’ a ty2)

| TYforall (<<a’>>ty’’) -> TYforall (<<a’>>(ty_subst ty’ a ty’’));;

let rec typecheck’ env t =

match t with

Tvar x -> lookup_env env x

| Tlam (ty, <<x>>t’) ->

TYfn (ty, typecheck’ (extend_env env x ty) t’)

| Tgen (<<a>>t’) -> TYforall (<<a>>(typecheck’ env t’))

| Tapp (t1, t2) ->

begin match (typecheck’ env t1, typecheck’ env t2) with

(TYfn (arg_ty, res_ty), ty) ->

if arg_ty = ty then res_ty

else raise Arg_type_mismatch

| _ -> raise Bad_application

end

| Tspec (Tgen (<<a>>t’), ty) -> ty_subst ty a (typecheck’ env t’)

| Tspec _ -> raise Bad_specialisation;;

let typecheck = typecheck’ [];;

Figure 2.3: Typechecker for PLC: part 2.

If the program receives input (encoded in some indicative textual format)

fun x -> fun x -> x and subsequently manipulates the parsed term (in-

deed, even if it just parses it to a syntax tree and then pretty-prints it) then

we would hope that only one textual name appears in the output. This ought

to be x, of course. No second name should be chosen since the second

binding of x shadows the first and there are no uses of the outermost x.

How do we adapt our algorithm to cope with this? Our answer presents an

elegant use of the freshfor construct. When encountering a binding point

in the syntax tree, we take the atom which the abstraction pattern-match

2.8. Pretty-printing 33

type t and var = t name;;

type lam = Var of var | Lam of string * <<var>>lam

| App of lam * lam;;

let rec lookup_atom varmap a =

match varmap with

[] -> raise Not_found

| (a’, s) :: xs -> if a = a’ then s else lookup_atom xs a;;

let rec name_used varmap s =

match varmap with

[] -> false

| (_, s’) :: xs -> if s = s’ then true else name_used xs s;;

let allocate_name varmap a s =

if name_used varmap s then

let s’ = s ^ "’" in

(s’, (a, s’) :: varmap)

else

(s, (a, s) :: varmap);;

Figure 2.4: Sample pretty-printing code.

has provided us with and check if it is fresh for the body using freshfor. If

it is, we know that the variable is actually unused and therefore its (newly-

generated) textual name may be re-used later.

Figures 2.4 and 2.5 present a sample pretty-printer for closed λ-terms

incorporating these techniques, together with its output. For simplicity, we

omit code to prevent superfluous parentheses arising in the output; also, we

use deeply-inefficient routines for handling maps keyed on atoms. Why do

we not use the standard library? The answer is that ways of incorporating

names into data structures such as hash tables and balanced binary trees are

still under investigation as we will eventually see in §7.1.2.

34 2. Pretty-printing

let rec print_lam varmap t =

match t with

Var a -> lookup_atom varmap a

| Lam (s, <<a>>t’) ->

let cont = function (var_text, new_varmap) ->

"fn " ^ var_text ^ " => " ^ (print_lam new_varmap t’)

in

(* if the atom a never occurs in t’, then we don’t need to

record the use of the textual name s *)

cont (if a freshfor t’ then (s, varmap)

else allocate_name varmap a s)

| App (t1, t2) -> "(" ^ (print_lam varmap t1) ^ ") " ^

"(" ^ (print_lam varmap t2) ^ ")";;

let print = print_lam [];;

let x = fresh;;

let y = fresh;;

let test1 = Lam ("x", <<x>>(Lam ("x", <<x>>(Var x))));;

let test2 = Lam ("y", <<y>>(App(Lam ("x", <<x>>(Lam ("y",

<<y>>(App (Var x, Var y))))), Var y)));;

print test1;;

- : string = "fn x => fn x => x"

print test2;;

- : string = "fn y => (fn x => fn y’ => (x) (y’)) (y)"

Figure 2.5: Sample pretty-printing tests and output.

3 Mini-FreshML, operationally

‘Inside every large language is

a small language struggling to

get out.’ —Igarashi et al.[25]

IN THIS CHAPTER we turn our attention to the formalisation of the new

constructs seen in Fresh O’Caml with a view to proving some observational

equivalence results. We do this by defining a small language Mini-FreshML

which provides for the key features:

• the dynamic allocation of fresh atoms;

• the creation and deconstruction of atom-abstractions;

• the process of atom-swapping;

• user-defined datatypes involving atom-abstractions.

After introducing the syntax and static semantics of Mini-FreshML, we will

give a traditional ‘big-step’ operational semantics to describe its evaluation

behaviour. This will then be augmented via an operational semantics based

on frame stacks[48]—a particular representation of the familiar evaluation,

or reduction contexts[29, 71]. We shall need this alternative formulation in

Chapter 5 where we give a denotational semantics to Mini-FreshML. It is by

using this denotational semantics that we will prove results about certain

notions of observational equivalence of Mini-FreshML expressions.

3.1 Syntax

We assume a countably infinite set VId of value identifiers (typical element

x) and a countably infinite set A of atoms (typical element a) disjoint from

VId. The expressions and canonical forms of Mini-FreshML are then the

abstract syntax trees generated by the grammars in Figure 3.1. The unusual

35

36 3. Syntax

language constructs have been highlighted like this . Since we will be work-

ing with a ‘substituted-in’ style of semantics (as opposed to ‘environment

style’, such as in [36, 63] and discussed in §3.5) then the canonical forms

(also known as values) are a subset of the expressions.

Write Expτ and Valτ for the closed expressions and canonical forms of

e ::= x value identifier

| () unit

| a atom

| Ck(e) data construction

| (e, e) pairing

| fresh fresh name creation

| <<e>>e abstraction

| swap e, e in e atom-swapping

| fun x(x) = e recursive function

| e e function application

| if e = e then e else e conditional

| let x = e in e value binding

| let (x, x) = e in e pair deconstruction

| let <<x>>x = e in e abstraction deconstruction

| match e with

C1(x1) -> e1

| · · ·
| CK(xK) -> eK

data value deconstruction

v ::= x value identifier

| () unit

| a atom

| Ck(v) data construction

| (v, v) pairing

| <<v>>v abstraction

| fun x(x) = e recursive function

Figure 3.1: Expressions and canonical forms of Mini-FreshML.

3.2. Static semantics 37

type τ respectively. Write Val for the set of all closed canonical forms.

An important point to note is that expressions are to be identified up to

α-conversion of bound value identifiers. The binding forms are as follows,

with the binding positions underlined.

fun x(x) = [–] match e with

let x = e in [–] C1(x1) -> [–]

let (x, x) = e in [–] | · · ·
let <<x>>x = e in [–] | CK(xK) -> [–]

Note that the atom-abstraction expression- and value-former <<–>>– is not a

binder. However, properties of Mini-FreshML observational equivalence will

turn out to have the following consequences:

• For distinct atoms a, a′ then the value <<a>>a is observationally equiv-

alent to <<a′>>a′.

• For distinct value identifiers x, x′ the value <<x>>x is observationally

equivalent to <<x′>>x′.

• For distinct value identifiers x, y and z the value <<y>>x is not obser-

vationally equivalent to <<z>>x.

3.2 Static semantics

Mini-FreshML is a strongly-typed language, although we use a monomor-

phic type system in order to keep the presentation as simple as possible.

(Therefore, in particular, let-expressions do not introduce polymorphism

unlike in Fresh O’Caml). Expressions are assigned types generated by the

grammar in Figure 3.2; let us write Typ for the set of all such types and

assume the presence of a single top-level type δ. Values of this type may

be built using the data constructors C1, · · · , CK , which have argument types

σ1, · · · , σK respectively. The σk are built from the same grammar as types

τ (and hence may contain occurrences of δ, in particular). Therefore δ

corresponds to a Fresh O’Caml type declaration of the form:

type δ = C1 of σ1 | · · · | CK of σK .

The theory which follows could be easily extended to cope with multiple,

possibly mutually-recursive top-level datatype declarations. We write Γ for

38 3. Static semantics

τ ::= unit unit type

| name name type

| δ data type

| τ × τ pair type

| <<name>>τ abstraction type

| τ → τ function type

Figure 3.2: Types of Mini-FreshML.

finite maps from value identifiers to types, thought of as typing contexts;

expressions may be assigned types in such contexts using the typing relation

`. This is a set of triples (Γ, e, τ) where Γ is a typing context, e is an

expression and τ is a type. We write Γ ` e : τ iff (Γ, e, τ) is in the relation,

which is defined by structural recursion on e according to the axioms and

rules in Figure 3.3. Write Γ, x : τ to indicate that typing context mapping x

to τ and otherwise acting as Γ. In the event that Γ is empty (and hence e is

closed), we abbreviate the notation and write ` e : τ . Since the canonical

forms are a subset of the expressions, then they are also assigned types

according to Figure 3.3.

Definition 3.2.1 (Atom sets and atom swapping). Given an expression e,

let atms(e) be the finite set of all atoms occurring within e. Given atoms a,

a′, write (a a′) · e for that expression formed by recursively exchanging all

occurrences of a and a′ throughout the expression e. Given a permutation π,

write π·e for that expression formed by recursively applying the permutation

π to the atoms throughout e. �

Definition 3.2.2 (Substitutions). Let substitutions ψ be finite maps from

value identifiers to closed canonical forms. Write e[ψ] for that expression

formed from another expression e by the capture-avoiding application of the

substitution ψ. Given a typing context Γ, write ` ψ : Γ just when dom(ψ) =

dom(Γ) and for each x ∈ dom(ψ), ` ψ(x) : Γ(x). Write ψ, x 7→ v for that

substitution mapping x to v and otherwise behaving as ψ. Occasionally for

clarity we will use the notation ψ[x 7→ v] instead of ψ, x 7→ v. �

The construction of the typing rules immediately gives the following two

3.2. Static semantics 39

vid
Γ ` x : τ

x ∈ dom(Γ) and τ = Γ(x)

atom
Γ ` a : name

a ∈ A unit
Γ ` () : unit

con
Γ ` e : σk

Γ ` Ck(e) : δ
fresh

Γ ` fresh : name

pair Γ ` e : τ Γ ` e′ : τ ′

Γ ` (e, e′) : τ × τ ′
abst Γ ` e : name Γ ` e′ : τ

Γ ` <<e>>e′ : <<name>>τ

swap
Γ ` e1 : name Γ ` e2 : name Γ ` e3 : τ

Γ ` swap e1, e2 in e3 : τ

fun
Γ, f : τ → τ ′, x : τ ` e : τ ′

Γ ` fun f(x) = e : τ → τ ′
app Γ ` e : τ ′→ τ Γ ` e′ : τ ′

Γ ` e e′ : τ

let
Γ ` e : τ ′ Γ, x : τ ′ ` e′ : τ

Γ ` let x = e in e′ : τ

let-pair
Γ ` e : τ1 × τ2 Γ, x : τ1, x′ : τ2 ` e′ : τ

Γ ` let (x, x′) = e in e′ : τ

let-abst
Γ ` e : <<name>>τ ′ Γ, x : name, x′ : τ ′ ` e′ : τ

Γ ` let <<x>>x′ = e in e′ : τ

if
Γ ` e : name Γ ` e′ : name Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e = e′ then e1 else e2 : τ

match
Γ ` e : δ for all 1 ≤ k ≤ K, Γ, xk : σk ` ek : τ
Γ ` match e with · · · | Ck(xk) -> ek | · · · : τ

Figure 3.3: Typing rules for expressions.

lemmata, whose proof follows by simple inspection.

Lemma 3.2.3 (Substitutivity). For substitutions ψ, typing contexts Γ and

expressions e then ` ψ : Γ implies that Γ ` e : τ ⇔ ` e[ψ] : τ . �

Lemma 3.2.4 (Equivariance for typing judgements). For any expression e

in context Γ and atoms a, a′ then Γ ` e : τ ⇔ Γ ` (a a′) · e : τ . �

The simplicity of the typing rules may be surprising (especially to those

familiar with [49]), but no further complication is required. This means that

40 3. Dynamic semantics via big-step

production of a Hindley-Milner style type inference algorithm1 for inferring

the types of our language constructs is straightforward. For example, note

the similarity between the rules for abstraction and pair expressions. This

is in contrast with the original FreshML-2000 design which made use of a

complicated static type system (discussed at length in §6.8). The lack of

such a type system is particularly helpful when considering how to modify

existing compilers in order to support our features, such as we have done

for Objective Caml.

Let us now move on and consider the evaluation behaviour of Mini-

FreshML, which presents more novelties than the static semantics.

3.3 Dynamic semantics via big-step

In this section we provide a big-step operational semantics which defines

how expressions evaluate to canonical forms. Overall the evaluation strat-

egy agrees with that of Fresh O’Caml because Mini-FreshML is also a strict

call-by-value language. The main point to bear in mind is that during the

evaluation of expressions we may have the computational effects arising

from the allocation of fresh atoms. This happens not only via the fresh ex-

pression but also by pattern-matching against abstraction patterns by using

let <<x>>x′ = e in e′.

In order to cope with this, we provide an evaluation relation on 4-tuples

(a, e, v, a′) where a and a′ are finite sets of atoms, e is a closed expression

and v a closed canonical form. We write a, e ⇓ v, a′ iff (a, e, v, a′) is in the

relation. Such a judgement is read as

In the state where the atoms a have been allocated, the expression

e evaluates to the value v and allocates the atoms a′ \ a.

The evaluation relation is inductively defined by the axioms and rules in

Figure 3.4, but restricted to those judgements a, e ⇓ v, a′ when a′ ⊇ a. From

inspection of that Figure, we obtain the following three lemmata and then

a subject reduction result.

1Whose roots may lie as far back as the work of Curry in the 1930s, or possibly even

Tarski in the 1920s.

3.3. Dynamic semantics via big-step 41

Lemma 3.3.1 (State growth during evaluation). Given an expression e and

a set of atoms a containing the atoms of e, then a, e ⇓ v, a′ implies that a′ ⊇ a

and atms(v) ⊆ a′. �

Lemma 3.3.2 (Equivariance for the big-step relation). For any atoms a,

a′ then a, e ⇓ v, a′ implies that (a a′) · a, (a a′) · e ⇓ (a a′) · v, (a a′) · a′, where

(a a′) · – acting on a finite set of atoms a is that finite set given by exchanging

all occurrences of a and a′ throughout a. �

Lemma 3.3.3 (Determinacy). If a, e ⇓ v, a′ and a, e ⇓ v′, a′′ then there exists

a permutation π : (a′ \ a) ∼= (a′′ \ a) such that v′ = π · v. �

Lemma 3.3.4 (Subject reduction). Take a substitution ψ, a typing context

Γ such that ` ψ : Γ and an expression e with Γ ` e : τ . Then for all

a′ ⊇ a ⊇ atms(e, ψ), whenever there exists a derivable judgement a, e[ψ]⇓v, a′

then ` v : τ .

Proof. By the substitutivity property of the typing relation (Lemma 3.2.3), it

suffices to prove that for all ψ with ` ψ : Γ and any a ⊇ atms(e, ψ),

∀v, a′ ⊇ a. (` e[ψ] : τ ∧ a, e[ψ] ⇓ v, a′) ⇒ ` v : τ

by induction over the axioms and rules defining the evaluation relation ⇓.

We give just those cases which are specific to Mini-FreshML.

I Case (fresh). Since fresh[ψ] = fresh then the result follows immedi-

ately by observing the (fresh) rule and noting that for any a ∈ A, ` a : name.

I Case (abst). First note that (<<e>>e′)[ψ] = <<e[ψ]>>e′[ψ]. Without

loss of generality we have that ` <<e[ψ]>>e′[ψ] : <<name>>τ ; the typing

rules then tell us that ` e[ψ] : name and ` e′[ψ] : τ . Take any a ⊇
atms(<<e[ψ]>>e′[ψ]) and a′′ ⊇ a; then atms(e[ψ]) ⊆ a and atms(e′[ψ]) ⊆ a.

Now if a, <<e[ψ]>>e′[ψ] ⇓ <<v>>v′, a′′, then by Lemma 3.3.1 there exists a′

with a′′ ⊇ a′ ⊇ a such that a, e[ψ] ⇓ v, a′ and a′, e′[ψ] ⇓ v′, a′′. Therefore,

atms(e′[ψ]) ⊆ a′. By applying the induction hypotheses we can then deduce

that ` v : name and ` v′ : τ . It follows that ` <<v>>v′ : <<name>>τ .

I Case (swap). Take atom-sets a′′′ ⊇ a ⊇ atms(swap e[ψ], e′[ψ] in e′′[ψ]);

assume ` swap e[ψ], e′[ψ] in e′′[ψ] : τ and a, swap e[ψ], e′[ψ] in e′′[ψ]⇓
v, a′′′. Then Lemma 3.3.1 implies that there exist further sets of atoms a′, a′′

satisfying the properties a ⊆ a′ ⊆ a′′ ⊆ a′′′, atms(e[ψ]) ⊆ a, atms(e′[ψ]) ⊆ a′

42 3. Dynamic semantics via big-step

atom
a, a ⇓ a, a a ∈ a unit

a, () ⇓ (), a

con
a, e ⇓ v, a′

a, Ck(e) ⇓ Ck(v), a
′ fresh

a, fresh ⇓ a, a] {a}
a ∈ A \ a

pair
a, e ⇓ v, a′ a′, e′ ⇓ v′, a′′

a, (e, e′) ⇓ (v, v′), a′′
abst

a, e ⇓ v, a′ a′, e′ ⇓ v′, a′′

a, <<e>>e′ ⇓ <<v>>v′, a′′

swap
a, e ⇓ a, a′ a′, e′ ⇓ a′, a′′ a′′, e′′ ⇓ v, a′′′

a, swap e, e′ in e′′ ⇓ (a a′) · v, a′′′

fun
a, fun f(x) = e ⇓ fun f(x) = e, a

app

a, e ⇓ fun f(x) = e′′, a′ a′, e′ ⇓ v′, a′′
a′′, e′′[fun f(x) = e′′/f, v′/x] ⇓ v, a′′′

a, e e′ ⇓ v, a′′′

let
a, e ⇓ v′, a′ a′, e′[v′/x] ⇓ v, a′′

a, let x = e in e′ ⇓ v, a′′

let-pair
a, e ⇓ (v′, v′′), a′ a′, e′[v′/x, v′′/x′] ⇓ v, a′′

a, let (x, x′) = e in e′ ⇓ v, a′′

let-abst
a, e ⇓ <<a>>v′, a′ a′] {a′}, e′[a′/x, (a a′) · v′/x′] ⇓ v, a′′

a, let <<x>>x′ = e in e′ ⇓ v, a′′
a′ ∈ A \ a′

if

a, e ⇓ a, a′ a′, e′ ⇓ a′, a′′
a = a′ ⇒ a′′, e1 ⇓ v, a′′′ a 6= a′ ⇒ a′′, e2 ⇓ v, a′′′

a, if e = e′ then e1 else e2 ⇓ v, a′′′

match
a, e ⇓ Cj(vj), a

′ ∧ a′, ej [vj/xj] ⇓ v, a′′

a, match e with · · · | Ck(xk) -> ek | · · · ⇓ v, a′′

Figure 3.4: Big-step semantics.

and atms(e′′[ψ]) ⊆ a′′. By the induction hypotheses, these come along with

values a, a′ and v satisfying ` a : name, ` a′ : name and ` v : τ . Now we

apply Lemma 3.2.4 to get that ` (a a′) · v : τ .

I Case (let-abst). Consider a′′ ⊇ a ⊇ atms(let <<x>>x′ = e[ψ] in e′[ψ]).

Assume that we have the judgements ` let <<x>>x′ = e[ψ] in e′[ψ] : τ

and let <<x>>x′ = e[ψ] in e′[ψ] ⇓ v, a′′. Then the typing rules together

with Lemma 3.2.3 give us that ` e[ψ] : <<name>>τ ′ and ` e′[ψ, x 7→ a′, x′ 7→

3.4. Dynamic semantics via frame stacks 43

v′] : τ , for any atom a′ and a closed v′ of type τ ′. One induction hypothesis

together with Lemma 3.3.1 now tells us that there exists a set of atoms a′

with a′ ⊇ a, a, e[ψ]⇓<<a>>v′, a′ and ` v′ : τ ′. Taking any a′ ∈ A\a′, Lemma

3.2.4 then tells us that ` (a a′) · v′ : τ . From earlier we now deduce that

` e′[ψ, x 7→ a′, x′ 7→ (a a′)·v′] : τ . Since atms(e′[a′/x, (a a′)·v′/x′]) ⊆ a′]{a′}
then ` ψ, x 7→ a′ : Γ, x 7→ name, x′ 7→ τ ′. Therefore the second induction

hypothesis together with Lemma 3.3.1 tells us that there exists a′′ ⊇ a′]{a′}
with a′] {a′}, e′[a′/x, (a a′) · v′/x′] ⇓ v, a′′ and furthermore ` v : τ . �

3.4 Dynamic semantics via frame stacks

In this section we introduce an operational semantics for Mini-FreshML

which draws on the theory of frame stack semantics[48]. This has two

distinct advantages over the previous big-step semantics:

• it provides a structurally-inductive definition of what it means for the

evaluation of an expression to terminate;

• it enables reasoning about evaluation properties without using explicit

name sets.

For our application, the second of these properties turns out to be the impor-

tant one. For when developing a denotational semantics for Mini-FreshML,

it is much easier to work in a world where the dynamically-allocated names

are kept implicit. The domain theory developed in Chapter 4 will enable us

to do this in the denotational semantics, which will match up well with this

new operational model.

3.4.1 A termination relation

What we are going to do is consider the termination behaviour of expres-

sions e in a frame stack S, defined as follows.

Definition 3.4.1 (Frames and frame stacks). Let an evaluation frame F be

as in Figure 3.5. A frame stack S consists of a possibly-empty list of frames

like so: S ::= [] | S ◦ F . Write S @ S′ for the frame stack consisting of S′

appended to S. �

Each evaluation frame acts like a fragment of an evaluation context;

we can think of a frame stack as representing one whole context. Frame

44 3. Dynamic semantics via frame stacks

Ck([–]) if v = [–] then e else e

([–], e) [–] e

(v, [–]) v [–]

<<[–]>>e let x = [–] in e

<<v>>[–] let (x, x′) = [–] in e

swap [–], e in e let <<x>>x′ = [–] in e

swap v, [–] in e match [–] with

swap v, v in [–] · · · | Ck(xk) -> ek | · · ·
if [–] = e then e else e

Figure 3.5: Evaluation frames F .

stacks are assigned types using a typing relation `s. This is a set of 4-tuples

(Γ, S, τ, τ ′) where Γ is a typing context, S is a frame stack and τ, τ ′ are types.

We write Γ`sS : τ (τ ′ iff (Γ, S, τ, τ ′) is in the relation, which is inductively

defined by the axiom and rules in Figures 3.6 and 3.7. Informally, a frame

stack of type τ (τ ′ accepts an argument of type τ in the hole and evaluates

to a value of type τ ′. Often we will not concern ourselves with the result

type, simply writing types such as τ (instead.

In Figures 3.8–3.10 we give a set of axioms and rules which define a

binary relation between frame stacks and expressions known as the termi-

nation relation2. In those Figures, e, e′, . . . stand for expressions, v, v′, . . .

stand for canonical forms and a, a′, . . . stand for atoms. The definition is

split into two parts according to whether we are currently considering a

canonical form or a non-canonical expression. For clarity, write 〈S, e〉↓ iff

the pair (S, e) lies in the relation. In this case, we say that ‘e terminates

when evaluated in stack S’.

Note how the definition of the termination relation is both structurally

inductive and also free of explicit atom-sets: the frame stacks encapsulate

2We could consider an abstract machine to interpret Mini-FreshML terms which evalu-

ates using frame stacks in a way corresponding to the termination relation 〈S, e〉↓. However,

the semantics which we give here is not directly suitable for this purpose since, in order

to make transitions deterministic, it would require runtime tests to determine if arbitrary

expressions were in canonical form. A possible solution to this problem would be to use a

CK/VK machine in the style of Levy[28] and we refer the reader to this work for details.

3.4. Dynamic semantics via frame stacks 45

empty
Γ `s [] : τ (τ

con
Γ `s S : δ (τ

Γ `s S ◦ Ck([–]) : σk (τ

pair-l
Γ `s S : τ1 × τ2 (τ Γ ` e : τ2

Γ `s S ◦ ([–], e) : τ1 (τ

pair-r
Γ `s S : τ1 × τ2 (τ Γ ` v : τ1

Γ `s S ◦ (v, [–]) : τ2 (τ

abst-l
Γ `s S : <<name>>τ (τ ′ Γ ` e : τ

Γ `s S ◦ <<[–]>>e : name (τ ′

abst-r
Γ `s S : <<name>>τ (τ ′ Γ ` v : name

Γ `s S ◦ <<v>>[–] : τ (τ ′

swap-1
Γ `s S : τ (τ ′ Γ ` e′ : name Γ ` e′′ : τ

Γ `s S ◦ swap [–], e′ in e′′ : name (τ ′

swap-2
Γ `s S : τ (τ ′ Γ ` v : name Γ ` e′′ : τ

Γ `s S ◦ swap v, [–] in e′′ : name (τ ′

swap-3
Γ `s S : τ (τ ′ Γ ` v : name Γ ` v′ : name

Γ `s S ◦ swap v, v′ in [–] : τ (τ ′

app-l
Γ `s S : τ ′ (τ ′′ Γ ` e : τ
Γ `s S ◦ [–] e : (τ → τ ′) (τ ′′

app-r

Γ `s : τ ′ (τ ′′

Γ ` v : τ → τ ′

Γ `s S ◦ v [–] : τ (τ ′′

Figure 3.6: Typing rules for frame stacks: part 1.

all the necessary information about the finitely many atoms previously gen-

erated. When we need to generate a new atom, we always know that there

will be cofinitely many left; and furthermore, by the next lemma then we

know that any such one will do. This is an example of the ‘some/any’ duality

expressed by use of the A quantifier in FM-set theory[20, 18].

Lemma 3.4.2 (Equivariance for the termination relation). For atoms a,

a′ then 〈S, e〉↓ implies 〈(a a′) ·S, (a a′) · e〉↓, where (a a′) ·S is that frame stack

obtained by recursively swapping all occurrences of a and a′ in S. �

Lemma 3.4.3 (Splitting frame stacks). If 〈S@S′, e〉↓ then 〈S′, e〉↓. Therefore

in particular, 〈S, e〉↓ implies that 〈[], e〉↓. �

As an example of Lemma 3.4.2, suppose that we wish to determine

46 3. Dynamic semantics via frame stacks

if-l
Γ `s S : τ ′ (τ Γ ` e : name Γ ` e′ : τ ′ Γ ` e′′ : τ ′

Γ `s S ◦ if [–] = e then e′ else e′′ : name (τ

if-r
Γ `s S : τ ′ (τ Γ ` v : name Γ ` e′ : τ ′ Γ ` e′′ : τ ′

Γ `s S ◦ if v = [–] then e′ else e′′ : name (τ

let
Γ `s S : τ ′ (τ ′′ Γ, x : τ ` e : τ ′

Γ `s S ◦ let x = [–] in e : τ (τ ′′

let-pair
Γ `s S : τ (τ ′ Γ, x : τ1, x′ : τ2 ` e : τ

Γ `s S ◦ let (x, x′) = [–] in e : τ1 × τ2 (τ ′

let-abst
Γ `s : τ ′ (τ ′′ Γ, x : name, x′ : τ ` e : τ ′

Γ `s S ◦ let <<x>>x′ = [–] in e : <<name>>τ (τ ′′

match
Γ `s S : τ (τ ′ for all 1 ≤ i ≤ K, Γ, xi : σi ` ei : τ

Γ `s S ◦ match [–] with · · · | Ck(xk) -> ek | · · · : δ (τ ′

Figure 3.7: Typing rules for frame stacks: part 2.

whether the fresh expression terminates in some frame stack S of type

name (. We see from the definition of the termination relation that

this holds just when 〈S, a〉 ↓ does, for some a not occurring in the atoms

of S. Therefore by Lemma 3.4.2 it follows that for any other such a′,

〈(a a′) · S, (a a′) · a〉↓ holds; so 〈S, a′〉↓ does also.

3.4.2 Relationship to the big-step semantics

We now wish to establish a link between the frame stack semantics and the

big-step semantics.

Lemma 3.4.4. Let e be a closed expression of type τ . Then a, e ⇓ v, a′ implies

that for all frame stacks S of type τ (, atms(S) ⊆ a ∧ 〈S, v〉↓ implies

that 〈S, e〉↓.

Proof. By showing that the property

Φ(a, e, v, a′) def= ∀S : τ (. ` e : τ ∧ atms(S) ⊆ a ∧ 〈S, v〉↓ ⇒ 〈S, e〉↓

is closed under the axioms and rules inductively defining the evaluation

relation ⇓. Note that Lemma 3.3.1 implies that we can always take a′ ⊇ a

3.4. Dynamic semantics via frame stacks 47

empty
〈[], v〉↓

con
〈S, Ck(v)〉↓

〈S ◦ Ck([–]), v〉↓

pair-l
〈S ◦ (v, [–]), e〉↓
〈S ◦ ([–], e), v〉↓

pair-r
〈S, (v′, v)〉↓

〈S ◦ (v′, [–]), v〉↓

abst-l
〈S ◦ <<v>>[–], e〉↓
〈S ◦ <<[–]>>e, v〉↓

abst-r
〈S, <<v>>v′〉↓

〈S ◦ <<v>>[–], v′〉↓

swap-1
〈S ◦ swap a, [–] in e′′, e′〉↓
〈S ◦ swap [–], e′ in e′′, a〉↓

swap-2
〈S ◦ swap a, a′ in [–], e′′〉↓
〈S ◦ swap a, [–] in e′′, a′〉↓

swap-3
〈S, (a a′) · v〉↓

〈S ◦ swap a, a′ in [–], v〉↓

app-l
〈S ◦ v [–], e〉↓
〈S ◦ [–] e, v〉↓

app-r
〈S, e[v/f, v′/x]〉↓
〈S ◦ v [–], v′〉↓

if v = fun f(x) = e

let
〈S, e[v/x]〉↓

〈S ◦ let x = [–] in e, v〉↓

let-pair
〈S, e[v/x, v′/x′]〉↓

〈S ◦ let (x, x′) = [–] in e, (v, v′)〉↓

let-abst
〈S, e[a′/x, ((a a′) · v)/x′]〉↓

〈S ◦ let <<x>>x′ = [–] in e, <<a>>v〉↓
a′ ∈ A \ atms(S, a, v, e)

Figure 3.8: 〈S, v〉↓ where v is a canonical form: part 1.

and atms(v) ⊆ a′; moreover, we always have that atms(e) ⊆ a since ⇓ is

only defined in the cases when this holds.

Let us now give the two interesting cases: those for fresh name creation

and deconstruction of abstraction values. The remaining ones are routine.

I Case (fresh). For some finite set of atoms a and some a ∈ A \ a we

must show Φ(a, fresh, a, a] {a}). The assumption atms(S) ⊆ a implies

that a /∈ atms(S); combining this with the other assumption that 〈S, a〉 ↓
gives us 〈S, fresh〉↓.

I Case (let-abst). For finite sets of atoms a ⊆ a′ ⊆ a′′ we wish to show that

Φ(a, let <<x>>x′ = e in e′, v, a′′) holds. As induction hypotheses we have

that Φ(a, e, <<a>>v′, a′) and Φ(a′, e′[a′/x, (a a′) · v′/x′], v, a′′) for a ∈ A and

48 3. Dynamic semantics via frame stacks

if-l
〈S ◦ if a = [–] then e1 else e2, e

′〉↓
〈S ◦ if [–] = e′ then e1 else e2, a〉↓

if-r-1
〈S, e1〉↓

〈S ◦ if a = [–] then e1 else e2, a
′〉↓

if a = a′

if-r-2
〈S, e2〉↓

〈S ◦ if a = [–] then e1 else e2, a
′〉↓

if a 6= a′

match
v = Ck(vk) ∧ 〈S, ek[vk/xk]〉↓

〈S ◦ match [–] with C1(x1) -> e1| · · · | CK(xK) -> eK , v〉↓

Figure 3.9: 〈S, v〉↓ where v is a canonical form: part 2.

any a′ ∈ A \ a′. Expanding these we obtain as assumptions that

∀S1. atms(S1) ⊆ a ∧ 〈S1, <<a>>v
′〉↓ ⇒ 〈S1, e〉↓; and (3.1)

∀S2. atms(S2) ⊆ a′ ∧ 〈S2, v〉↓ ⇒ 〈S2, e
′[a′/x, (a a′) · v′/x′]〉↓ . (3.2)

For S with atms(S) ⊆ a we wish to show that 〈S, let <<x>>x′ = e in e′〉↓
under the assumption that 〈S, v〉↓. It therefore suffices to show that 〈S ◦
let <<x>>x′ = [–] in e′, e〉↓ holds. This follows from (3.1) if we can show

atms(S ◦ let <<x>>x′ = [–] in e′) ⊆ a; and (3.3)

〈S ◦ let <<x>>x′ = [–] in e′, <<a>>v′〉↓ . (3.4)

We have atms(let <<x>>x′ = e in e′) ⊆ a (from the earlier observation

before the first proof case), which shows (3.3) since atms(S) ⊆ a holds by

assumption. To see (3.4) it suffices to show that

〈S, e′[a′′/x, (a a′′) · v′/x′]〉↓ (3.5)

holds, where a′′ ∈ A \ atms(S, a, v′, e′). Since a′ ⊇ a then atms(S) ⊆ a′.

Moreover, atms(<<a>>v′) ⊆ a′ (again from the earlier observations) and

therefore atms(a, v′) ⊆ a′. Since atms(let <<x>>x′ = e in e′) ⊆ a then

atms(e′) ⊆ a′. Therefore it is certainly the case that a′′ ∈ A \ a′ implies

a′′ ∈ A \ atms(S, a, v′, e′). We may therefore choose any a′′ ∈ A \ a′ and

attempt to apply (3.2) (using this a′′ as the a′ in that hypothesis) to conclude

(3.5). It therefore remains to show that firstly, atms(S) ⊆ a′ and secondly,

〈S, v〉↓. However the first of these is satisfied since a′ ⊇ a and the second of

these follows by earlier assumption. �

3.4. Dynamic semantics via frame stacks 49

nc-con
〈S ◦ Ck([–]), e〉↓
〈S, Ck(e)〉↓

nc-fresh
〈S, a〉↓

〈S, fresh〉↓
a ∈ A \ atms(S) nc-pair

〈S ◦ ([–], e′), e〉↓
〈S, (e, e′)〉↓

nc-abst
〈S ◦ <<[–]>>e′, e〉↓
〈S, <<e>>e′〉↓

nc-swap
〈S ◦ swap [–], e′ in e′′, e〉↓
〈S, swap e, e′ in e′′〉↓

nc-app
〈S ◦ [–] e′, e〉↓
〈S, e e′〉↓

nc-let
〈S ◦ let x = [–] in e′, e〉↓
〈S, let x = e in e′〉↓

nc-let-pair
〈S ◦ let (x, x′) = [–] in e′, e〉↓
〈S, let (x, x′) = e in e′〉↓

nc-let-abst
〈S ◦ let <<x>>x′ = [–] in e′, e〉↓
〈S, let <<x>>x′ = e in e′〉↓

nc-if
〈S ◦ if [–] = e′ then e1 else e2, e〉↓
〈S, if e = e′ then e1 else e2〉↓

nc-match
〈S ◦ match [–] with C1(x1) -> e1| · · · | CK(xK) -> eK , e〉↓
〈S, match e with C1(x1) -> e1| · · · | CK(xK) -> eK 〉↓

Figure 3.10: 〈S, e〉↓ where e is not necessarily canonical.

Lemma 3.4.5. Let e be a closed expression of type τ and let S be a closed

frame stack of type τ (. Then 〈S, e〉↓ implies that for all a ⊇ atms(e) there

exists a value v and some a′ ⊇ a such that a, e ⇓ v, a′ ∧ 〈S, v〉↓.

Proof. By showing that the property

Φ(S, e) def= ` e : τ ∧ `s S : τ (∧ 〈S, e〉↓ ⇒
∀a. a ⊇ atms(e) ⇒ ∃v, a′. a′ ⊇ a ∧ a, e ⇓ v, a′ ∧ 〈S, v〉↓

is closed under the axioms and rules inductively defining the termination

relation. The proof splits into two parts, depending on whether or not e is a

canonical form. It is easily seen that in the case where e is indeed canonical,

then Φ(S, e) holds trivially. When e is not canonical, we must examine

individual cases. Here we give the same two cases as we did for Lemma

3.4.4; the others are again routine. The two cases we pick highlight how

50 3. Environment style semantics

the equivariance property of the termination relation (viz. Lemma 3.4.2)

must be exploited during calculations.

I Case (nc-fresh). Assume 〈S, fresh〉↓ and take any finite set of atoms a.

Then a ⊇ atms(fresh) and for any a /∈ atms(S), 〈S, a〉↓ holds. Now take any

a′ ∈ A \ atms(S) \ a \ {a}. Then (a a′) · S = S and by Lemma 3.4.2, 〈S, a′〉↓
holds. Since a /∈ a it also follows that a, fresh ⇓ a′, a] {a′} as required.

I Case (nc-let-abst). Assume 〈S, let <<x>>x′ = e in e′〉↓ and take a ⊇
atms(let <<x>>x′ = e in e′). The termination judgement must have been

derived by knowing 〈S ◦ let <<x>>x′ = [–] in e′, e〉↓; since a ⊇ atms(e) it

follows (by the first induction hypothesis) that there exists a value v′′ and

some a′ ⊇ awith a, e⇓v′′, a′ and 〈S◦let <<x>>x′ = [–] in e′, v′′〉↓; Lemma

3.3.4 tells us that we can write v′′ as <<a>>v′. This termination judgement

must in turn have been derived by knowing that 〈S, e′[a′/x, (a a′) · v′]〉↓, for

some a′ ∈ A \ atms(S, e′, a, v′). Taking any a′′ ∈ A \ atms(S, e′, a, a′, v′) \
a′, Lemma 3.4.2 tells us that 〈S, e′[a′′/x, (a a′′) · v′]〉 ↓. It follows (by the

second induction hypothesis) that there exists a v and some a′′ ⊇ a′ with

a′, e′[a′′/x, (a a′′) · v′] ⇓ v, a′′ and 〈S, v〉 ↓. It follows that the evaluation

judgement a, let <<x>>x′ = e in e′ ⇓ v, a′′ holds since a′′ /∈ a′. �

The following theorem, with associated corollary, now follows immediately

by combining Lemmata 3.4.4 and 3.4.5.

Theorem 3.4.6 (Equivalence of dynamic semantics). Let S be a frame

stack of type τ (and e be a closed expression of type τ . Then 〈S, e〉↓ holds

iff there exists a ⊇ atms(S, e) with a, e⇓v, a′ and 〈S, v〉↓, for some value v and

a finite set of atoms a′ ⊇ a. �

Corollary 3.4.7. Let e be a closed expression of type τ . Then 〈[], e〉↓ holds just

when there exists a′ ⊇ a ⊇ atms(e) and a value v with a, e ⇓ v, a′. �

3.5 Environment style semantics

In this section, we very briefly review another variety of semantics: that

given in environment style. Such a semantics involves the propagation of

what we shall call a value environment: a finite map from value identifiers

to values. The space of values may be disjoint from the space of expressions

and the environments are used to look up values of previously-introduced

identifiers.

3.6. Notions of observational equivalence 51

As an example, the evaluation rule

a, e ⇓ v′, a′ a′, e′[v′/x] ⇓ v, a′′

a, let x = e in e′ ⇓ v, a′′

from §3.3 could be written in environment style as follows:

a,E ` e ⇓ v′, a′ a′, E[x 7→ v′] ` e′ ⇓ v, a′′

a,E ` let x = e in e′ ⇓ v, a′′

where E stands for a value environment and E[x 7→ v′] is that value envi-

ronment mapping x to v′ and otherwise acting as E.

It should be evident that an environment style semantics corresponds

more closely to how an implementation might work. A classic example of

such a semantics is that given by Milner et al.[36] in the definition of the

Standard ML language.

For the most part, this thesis uses the familiar ‘substituted-in’ style of

semantics which we have seen earlier in this chapter. (In that setting, the

canonical forms must be a subset of the expressions of the language.) There

is no particular reason for choosing one way or the other for the forthcoming

correctness results. However, in Chapter 7 we make use of an environment

style semantics in a setting where it greatly simplifies the presentation.

3.6 Notions of observational equivalence

Soon we will be talking about the observational equivalence of Mini-FreshML

expressions: when does one expression behave the same as another, in

some sense? At this stage it is appropriate to pick a particular notion of

equivalence with which to work. We are actually going to use what is

regarded as something of a benchmark for observational equivalence: the

notion of contextual equivalence3. Two expressions are said to be contex-

tually equivalent if they may be freely exchanged within the source text of

some enclosing program without affecting the program’s observable results.

Definition 3.6.1 (Contexts). A context C consists of an expression contain-

ing one or more ‘holes’, as given in Figure 3.11. For contexts C and C ′,

write C[C ′] for the context formed by inserting C ′ into the holes in C. For

an expression e, write C[e] for the expression formed by inserting e into the

3Specified in a traditional way, no less: for an arguably more modern exposition see

[44], for example.

52 3. Notions of observational equivalence

C ::= [–] hole

| x value identifier

| () unit

| a atom

| Ck(C) data construction

| (C, C) pairing

| fresh fresh name creation

| <<C>>C abstraction

| swap C, C in C atom-swapping

| fun x(x) = C recursive function

| C C function application

| if C = C then C else C conditional

| let x = C in C value binding

| let (x, x) = C in C pair deconstruction

| let <<x>>x = C in C abstraction deconstruction

| match C with

C1(x1) -> C1

| · · ·
| CK(xK) -> CK

data value deconstruction

Figure 3.11: Contexts.

holes in C. Note that both of these operations4 may involve binders in C

capturing identifiers in C ′ (resp. e); thus, contexts are not identified up to

α-conversion. �

Definition 3.6.2. For frame stacks S and frames F then define Ctxt(–) by

induction on the size of S as follows.

Ctxt([]) def= [–] Ctxt(S ◦ F) def= (Ctxt(S))[F]. �

Lemma 3.6.3. For a closed frame stack S of type τ (and a closed

expression e of type τ ,

〈S, e〉↓⇔ 〈[], (Ctxt(S))[e]〉↓ . (3.6)

4Such operations are a good example of metaprogramming tasks which are significantly

simplified by the presence of freshness features in the metalanguage.

3.6. Notions of observational equivalence 53

Proof. By a monotonous induction on the structure of S, whose details we

omit. �

Definition 3.6.4 (Contextual preorder, contextual equivalence). The 4-

tuple (Γ, e, e′, τ) is said to be in the type-respecting relation of contextual

preorder iff e and e′ may be assigned type τ in typing context Γ and for all

contexts C such that C[e] and C[e′] are typeable closed expressions,

(∀a ⊇ atms(C[e]). ∃a′ ⊇ a. ∃v ∈ Valτ . a, C[e] ⇓ v, a′) ⇒
(∀a ⊇ atms(C[e′]). ∃a′ ⊇ a. ∃v′ ∈ Valτ . a, C[e′] ⇓ v′, a′).

Write Γ ` e ≺ctx e′ : τ iff (Γ, e, e′, τ) is in the relation. The relation of

contextual equivalence, denoted by Γ ` e ≈ctx e
′ : τ , is the symmetrisation

of contextual preorder. Let us just write e ≈ctx e′ iff e and e′ are closed

contextually-equivalent expressions. �

It is an immediate consequence of Theorem 3.4.6 that we can charac-

terise contextual equivalence using frame stack semantics in the following

way.

Lemma 3.6.5 (≈ctx in terms of termination). The contextual pre-order Γ `
e ≺ctx e′ : τ holds just when for all contexts C such that C[e] and C[e′]

are typeable closed expressions, 〈[], C[e]〉↓ implies that 〈[], C[e′]〉↓. Therefore

Γ` e ≈ctx e
′ : τ just when for all such contexts C, 〈[], C[e]〉↓⇔ 〈[], C[e′]〉↓. �

Now whilst contextual equivalence is a powerful notion which is con-

venient for establishing further results, it can be difficult to work with due

to the necessity to quantify over all possible contexts. We manage to get

around such difficulties by calculating with another notion of equivalence:

Mason and Talcott’s notion of ‘CIU-equivalence’[29]. In §5.5 we will prove

that this coincides with Mini-FreshML contextual equivalence.

Definition 3.6.6 (CIU-preorder, CIU-equivalence). The 4-tuple (Γ, e, e′, τ)

is said to be in the type-respecting relation of CIU-preorder iff Γ ` e : τ ,

Γ` e′ : τ and for all substitutions ψ with ` ψ : Γ and all closed frame stacks

S of type τ (then 〈S, e[ψ]〉↓ ⇒ 〈S, e′[ψ]〉↓. Write Γ ` e ≺ciu e
′ : τ iff

(Γ, e, e′, τ) is in the relation. The symmetrisation is called CIU-equivalence,

denoted by Γ ` e ≈ciu e′ : τ . Write e ≈ciu e′ iff e and e′ are closed CIU-

equivalent expressions. �

54 3. Correctness for Mini-FreshML

3.7 Correctness for Mini-FreshML

In this section we shall examine some desirable Mini-FreshML correctness

properties which will be proved later in Chapter 5. These properties centre

around the behaviour of Mini-FreshML expressions which are being used to

represent, or compute, values of some object-language syntax.

For simplicity, we will consider an object language whose terms t ∈ Λ

are those of the untyped λ-calculus,

t ::= x | λx. t | t t

where x ranges over the countably infinite set of variables VId. Whilst

this example is simple, it captures the essential features of object languages

specified by a certain notion of binding signature[17, 18] to which our theory

can be generalised. Providing the operations of the binding signature do not

involve function space constructions then the syntax of such a language may

be specified by an algebraic datatype5. In this particular case, the suitable

datatype declaration is:

type δ = C1 of name | C2 of <<name>>δ | C3 of δ × δ.

Let us write Var for C1, Lam for C2, App for C3 and lam for δ. Furthermore,

write vars(t) for the finite set of all variables occurring within a term t.

Extend this notation to handle multiple terms in the obvious manner. Given

value identifiers x, x′ ∈ VId and a λ-term t then write (x x′) · t for that term

obtained by swapping all occurrences of x and x′ throughout t.

We shall be particularly concerned with the relationships which exist

between Mini-FreshML expressions and α-equivalence classes of object-level

terms. We use the Gabbay-Pitts characterisation[20] of α-equivalence which

is defined by structural recursion on λ-terms as follows.

Definition 3.7.1 (α-equivalence).

x ≡α x
x ∈ VId (3.7)

(x x′′) · t ≡α (x′ x′′) · t′

λx. t ≡α λx
′. t′

x′′ ∈ VId \ vars(x, x′, t, t′) (3.8)

t1 ≡α t
′
1 t2 ≡α t

′
2

t1 t2 ≡α t
′
1 t

′
2

. � (3.9)

5That is, one not involving the function space constructor: note that this notion of

‘algebraic’ differs from the usual one in the sense that we allow <<name>>τ types to appear.

3.7. Correctness for Mini-FreshML 55

Note that α-equivalence is closed under swapping: if t ≡α t
′ then (x x′) ·

t ≡α (x x′) · t′ for any value identifiers x, x′ ∈ VId. Such identities do

not hold when one uses arbitrary renamings as opposed to swappings. For

example the open terms λx. x y and λz. z y are α-equivalent, but given a

free identifier x we obtain that (λx. x y)[y 7→ x] = λx. x x 6≡α λz. z x =

(λz. z y)[y 7→ x] (writing [y 7→ x] for the non-capture-avoiding substitution

of x for y). However, (x y) · (λx. x y) = λy. y x ≡α λz. z x = (x y) · (λz. z y).
Good properties like this did indeed inspire development of the original

permutation model of name binding[20].

Given some λ-term t, we may encode it as a Mini-FreshML expression by

using the following translation function.

Definition 3.7.2 (Translation to expressions). For each λ-term t, define a

Mini-FreshML expression [t]e ∈ Expδ by induction on the structure of t as

follows.

[x]e
def= Var(x)

[λx. t]e
def= let x = fresh in Lam(<<x>>[t]e)

[t t′]e
def= App([t]e, [t′]e)

Recall we identify expressions up to α-equivalence of bound value identi-

fiers. If t is a closed (resp. open) term, then [t]e is a closed (resp. open)

value. �

Lemma 3.7.3. The translation [–]e is equivariant: if x, x′ ∈ VId then (x x′) ·
[t]e = [(x x′) · t]e. �

Using our denotational semantics we will be able to prove the following

facts about Mini-FreshML. The first of these is the most important result of

all, for it shows how contextual equivalence at the meta-level coincides with

α-equivalence at the object level.

Fact 3.7.4 (Correctness for expressions). For λ-terms t, t′ with free vari-

ables contained in a finite set {x0, · · · , xn} ⊆ VId,

t ≡α t
′ ⇔ {x0 : name, · · · , xn : name} ` [t]e ≈ctx [t′]e : lam. �

Fact 3.7.5 (Form of expressions). For a closed Mini-FreshML expression e of

type lam and a divergent term Ω, then either e ≈ctx Ω or there exists a closed

value v of type lam with

e ≈ctx let x1 = fresh in · · · let xn = fresh in v,

56 3. Correctness for Mini-FreshML

for value identifiers {x1, . . . , xn}.

These results are neither quick nor straightforward to prove. In order

to show their correctness, we shall develop a new variety of domain theory

and then exploit it to obtain a denotational semantics for Mini-FreshML.

By relating this to the operational semantics, we will be able to derive the

desired results at the end of Chapter 5.

4 A domain theory for names

‘There is an infinite set A that is

not too big.’ —von Neumann

IN THIS CHAPTER, we develop a variant of classical domain theory[3, 52]

which is good for reasoning about names and name binding. This theory

forms the basis of our denotational model of Mini-FreshML in Chapter 5.

The domain theory centres around the permutation model of name binding

developed by Pitts and Gabbay[20, 18], although there is an important

difference between their presentation and that given here. For those authors

take as their foundation an axiomatisation of FM-set theory and develop

constructions fully internalised within that world. In this thesis, we take a

somewhat less radical approach and make constructions in standard ZF-set

theory which parallel those in FM-set theory. This enables us to exploit

the novel features offered by FM whilst still retaining a familiar logical

foundation.

FM-domain theory provides a relatively uncomplicated setting for rea-

soning about names and name binding. In particular, all dependencies

on parameterising name sets may be made implicit—removing any need

to index over ‘possible worlds’ as seen so widely in approaches based on

functor category semantics[17, 66]. The various constructions which we

make in FM-domain theory are generally quite straightforward (although

occasionally rather subtle) and benefit from not being complicated by such

indexing. Although as we shall observe later, working in FM-domain theory

is equivalent to working in a certain category of functors.

4.1 FM-sets, FM-cpos and FM-cppos

For simplicity, we work with respect to a fixed countably infinite set A of

atoms. The theory could, however, be generalised to handle different sorts

of atoms rather like one sees in Fresh O’Caml and in FMS-set theory[20].

57

58 4. FM-sets, FM-cpos and FM-cppos

Definition 4.1.1 (Permutations and actions). Let a permutation π be a

member of the permutation group perm(A) on A. Such a π is therefore a

bijection from A to itself. Write id for the identity permutation and π′ ◦ π
for that permutation acting as π and then as π′.

An action of the group perm(A) on a set D is specified by a binary

operator ·D : perm(A)×D→D satisfying:

id ·D d = d and π ·D (π′ ·D d) = (π ◦ π′) ·D d

for all d ∈ D. Call a set equipped with such an action a perm(A)-set and

omit the D subscript of ·D when the meaning is clear. �

For example, the set of atoms A has a canonical permutation action

(π, a) 7→ π(a). One particular set may determine various perm(A)-sets by

varying the action: for example, we could construct another perm(A)-set

based on A by equipping it with the null action (π, a) 7→ a.

We shall often be concerned with those permutations π which consist of

a single transposition of two atoms. Let us write (a a′) for that permutation

exchanging a and a′ and acting as the identity otherwise. The following

lemma then follows immediately.

Lemma 4.1.2. For atoms a, b, c, d then (a b)·(c d)·x = (c d)·((c d)·a (c d)·b)·x
and (a b) · (c d) · x = ((a b) · c (a b) · d) · (a b) · x. �

Definition 4.1.3. For a finite set a ⊆ A and a permutation π, say that π fixes

a pointwise iff for all a ∈ a, π(a) = a. �

Definition 4.1.4 (Finite support). Let D be a perm(A)-set and take some

d ∈ D. Say that d is finitely supported (with respect to the action ·D) iff there

exists a finite set a ⊆ A such that each permutation π fixing a pointwise also

fixes d (that is to say, π · d = d).

It is a consequence of this definition that each finitely-supported element

d of a perm(A)-set possesses a least finite support[20, Proposition 3.4]. Let

us write supp(d) for this least finite support. When talking about multiple

elements of some perm(A)-set(s) at one time, we write supp(d, d′) etc. for

the union of their supports in the obvious manner. It is in fact possible to

express the support of an element d ∈ D as an exact formula, thus:

supp(d) def= {a ∈ A | {b ∈ A | (a b) · d 6= d} is not finite}

4.1. FM-sets, FM-cpos and FM-cppos 59

although this alternative definition is somewhat difficult to work with.

The support of an element d may be thought of as ‘all of the atoms

involved in d’s construction’. This corresponds with the fact that for atoms

a, a′ not in the support of d then (a a′) · d = d. We say that such atoms are

fresh for d, sometimes written aB d.

By imposing the condition that each element of a perm(A)-set must be

finitely supported, we arrive at the following definition.

Definition 4.1.5 (FM-sets). Let D be a perm(A)-set. Then D forms an FM-

set iff all of its elements are finitely supported. �

Definition 4.1.6 (Finitely supported and equivariant subsets). Given an

FM-set D, say that S ⊆ D is finitely supported iff there exists a finite set of

atoms a such that for all π which fix a pointwise, {π · s | s ∈ S} = S. Say

that S is an equivariant subset if we can take a to be empty. Write S ⊆eq D

just when S is an equivariant subset of D. �

Definition 4.1.7 (Powersets). Given an FM-set D write P(D) for the pow-

erset of D, whose members are all finitely-supported subsets of D. This

becomes an FM-set when equipped with the action π · S def= {π · s | s ∈ S}
for all S ⊆ D. �

Remark 4.1.8. Note that given FM-sets S, D with S ⊆ D then we also have

that π · S ⊆ π ·D for any permutation π. �

Definition 4.1.9 (Products). Given FM-sets D and E, we can form their

product D × E whose underlying set is that of the usual Cartesian product.

Writing (d, e) for an element of D × E, the permutation action is given by

π ·(d, e) def= (π ·Dd, π ·E e). Each element of D×E is clearly finitely supported

by virtue of the elements of D and E having this property. �

Definition 4.1.10 (FM-relations). Say that a subset R ⊆ D × E is an FM-

relation if it is a finitely-supported subset of D×E in the sense of Definition

4.1.6. �

Lemma 4.1.11. Given some FM-set D and any d ∈ D then for all permuta-

tions π, supp(π · d) ⊆ π · supp(d) (where the permutation action on the finite

set of atoms supp(d) is as in Definition 4.1.7).

60 4. FM-sets, FM-cpos and FM-cppos

Proof. We show that π · supp(d) is a finite support (but not necessarily the

least such) for π · d. Given any permutation π′ which fixes π · supp(d) def=

{π(a) | a ∈ supp(d)} pointwise, we have that for all a ∈ supp(d), π′ ◦π ·a =

π · a. Therefore π−1 ◦ π′ ◦ π · a = a. We need to show that π′ ◦ π · d = π · d,

so it suffices to show π−1 ◦ π′ ◦ π · d = d. This follows from above where we

see that π−1 ◦ π′ ◦ π fixes the support of d. �

Lemma 4.1.12. Given some FM-set D and any d ∈ D then for all permuta-

tions π, supp(π · d) = π · supp(d).

Proof. Lemma 4.1.11 tells us that supp(π · d) ⊆ π · supp(d). To get the other

direction, we can instantiate the same Lemma using the permutation π−1

and the element π ·d ∈ π ·D to deduce that supp(π−1 ·π ·d) ⊆ π−1 ·supp(π ·d).
It follows that π · supp(d) ⊆ supp(π · d) by equivariance of ⊆ (viz. Remark

4.1.8). �

As is usual when giving a denotational semantics to a programming

language we shall require a mathematical object with more structure than

a set in order to denote function types. We use an analogue of the familiar

notion of chain-complete partially-ordered set (cpo) as follows.

Definition 4.1.13 (FM-cpos). An FM-cpo D is an FM-set equipped with a

partial order relation vD ⊆ D ×D, written d vD d′ whenever (d, d′) ∈ vD.

We write v instead of vD when the meaning is clear. The relation v must

be reflexive, anti-symmetric, transitive and equivariant, that is to say ‘must

be closed under swapping’:

d v d′ ⇒ ∀π ∈ perm(A). π · d v π · d′. (4.1)

Furthermore, we require that any countable ascending chain (dn | n < ω) ∈
D which overall possesses a finite support S (that is to say, supp(dn) ⊆ S for

all n < ω) has a least upper bound
⊔

n<ω dn. �

Definition 4.1.14 (FM-complete lattices). An FM-complete lattice is an FM-

set D equipped with an equivariant partial order relation v such that every

finitely-supported subset S ⊆ D has a greatest lower bound (and hence also

a least upper bound). �

Notation 4.1.15. Given a finitely-supported chain (dn | n < ω) in some FM-

cpo D, write supp (dn | n < ω) for the least finite support of the chain (such

that supp(dn) ⊆ supp (dn | n < ω) for all n < ω). �

4.1. FM-sets, FM-cpos and FM-cppos 61

Note that an FM-cpo may not have least upper bounds of all countable

ascending chains. For example, consider the FM-cpo whose underlying set

consists of all finite subsets of A ordered by inclusion. Enumerating1 the

elements of A as a0, a1, . . . then we get a chain {a0} v {a0, a1} v · · · which

is clearly not finitely supported and indeed does not possess a least upper

bound. Indeed, any chain in this FM-cpo possesses finite support just when

the chain is eventually constant.

In this thesis we will predominantly work with pointed FM-cpos called

FM-cppos, defined as follows.

Definition 4.1.16 (FM-cppos). An FM-cppo is an FM-cpo D equipped with

a distinguished least element ⊥: for all d ∈ D, ⊥ v d. Condition (4.1) then

forces the support of ⊥ to be empty in order for ⊥ to be unique. �

We have made the choice of using FM-cppos rather than FM-cpos just

because the many and various domain-theoretic constructions seem to work

rather more smoothly in this setting. Morally speaking too, there is some-

thing more pleasant about FM-cppos in general. For example, we shall

see shortly how to construct a strict function space D (D′ between FM-

cppos; by virtue of using pointed sets the unlift of such a construction is

immediately well-defined without having even to consider the pointedness

of D′ as one would otherwise.

Lemma 4.1.17. Let D be an FM-cpo. Then for a finitely-supported chain

(dn | n < ω) in D, we have π ·
⊔

n<ω dn =
⊔

n<ω π · dn.

Proof. Follows immediately from (4.1), since this shows that the bijection π

preserves vD. �

Lemma 4.1.18. Let D be an FM-cpo. Then for a chain (dn | n < ω) in D, we

have supp(
⊔

n<ω dn) ⊆ supp (dn | n < ω).

Proof. We proceed by showing that all π fixing supp (dn | n < ω) pointwise

also fix
⊔

n<ω dn, for then we know that supp (dn | n < ω) is a finite support

for
⊔

n<ω dn. For such a π then it is clear that π · dn = dn. Therefore⊔
n<ω π · dn =

⊔
n<ω dn and we can conclude by Lemma 4.1.17. �

1Such a construction could not be performed formally inside FM-set theory, as the

bijection does not possess finite support.

62 4. Some FM-cpos and their construction

4.2 Some FM-cpos and their construction

4.2.1 Atoms, lifting, products and sums

Definition 4.2.1 (The FM-cpo of atoms). The set A can be turned into an

FM-cpo (also confusingly named A) specified as follows.

. Underlying set: the set of atoms A.

. Permutation action: canonical action π ·A a
def= π(a) for all a ∈ A.

. Partial order: a vA a′
def⇔ a = a′, for all a, a′ ∈ A. �

It is a consequence of this definition that supp(a) = {a} for all a ∈ A.

Definition 4.2.2 (Lifting). The lift of an FM-cpo D, written D⊥ is the FM-

cppo specified by the following.

. Underlying set: is given by D] {⊥} (note that we assume ⊥ 6∈ D).

. Permutation action: is as for D.

. Partial order: {(d, d′) ∈ (D ∪ {⊥})× (D ∪ {⊥}) | d vD d′ ∨ d = ⊥}.

. Least element: ⊥. �

Definition 4.2.3 (Unlifting). The unlift of an FM-cppo D, written D↓ is the

FM-cpo specified by the following.

. Underlying set: the underlying set of D with ⊥ removed.

. Permutation action: is as for2 D.

. Partial order: {(d, d′) ∈ D ×D | d vD d′ ∧ d 6= ⊥}. �

It is a consequence of these definitions that the least finite support of a

non-bottom element d ∈ D, for some FM-cppo D, is the same as that of the

element d ∈ D↓ . Similarly, given an element e of an FM-cpo E then the least

finite support of e is equal to that of the element e ∈ E⊥.

Definition 4.2.4 (Products). The product of FM-cpos D and E, written

D × E is the FM-cpo specified by the following.

. Underlying set: {(d, e) | d ∈ D ∧ e ∈ E}.

. Permutation action: π ·D×E (d, e) def= (π ·D d, π ·E e).

. Partial order: (d, e) vD×E (d′, e′) def⇔ d vD d′ ∧ e vE e′. �

It follows that given FM-cpos D and E, the least finite support of an

element (d, e) ∈ D×E is given by supp(d)∪ supp(e). Furthermore, if D and

E are in fact FM-cppos then so is D × E, with least element (⊥D,⊥E).

2Since π ·D ⊥ = ⊥ and π is a bijection on D then the action π ·D – does indeed induce a

bijection on D↓ .

4.2. Some FM-cpos and their construction 63

Definition 4.2.5 (Smash products). The smash product of FM-cppos D and

E is the FM-cppo D ⊗ E
def= (D↓ × E↓)⊥. �

It follows that given FM-cppos D, E the least finite support of a non-

bottom element, written 〈d, e〉 ∈ D ⊗ E, is supp(d) ∪ supp(e).

Definition 4.2.6 (Coalesced sums). The coalesced sum D⊕E of FM-cppos

D and E is specified by the following.

. Underlying set: the union of {⊥D⊕E}, { in1(d) | d ∈ D ∧ d 6= ⊥D} and

{ in2(e) | e ∈ E ∧ e 6= ⊥E}, where ⊥D⊕E is a distinguished least element.

. Permutation action: defined as follows for s ∈ D ⊕ E:

π · s def=


in1(π ·D d) if s = in1(d);

in2(π ·E e) if s = in2(e);

⊥D⊕E otherwise.

. Partial order: is again defined by case analysis:

⊥D⊕E v d for all d ∈ D ⊕ E;

ini(d) v inj(d′) iff i = j and d v d′. �

It follows that the least finite support of a non-bottom element s ∈ D⊕E
is supp(d) if s = in1(d); and supp(e) if s = in2(e).

4.2.2 Functions and function spaces

Definition 4.2.7 (Permutation action for functions). Take FM-sets X and

Y and let f be a total function from the underlying set of X to that of Y .

We can equip f with a permutation action by defining

(π · f)(x) def= π ·Y (f(π−1 ·X x)). � (4.2)

Definition 4.2.8 (Finitely-supported functions). Say that f is a finitely-

supported function iff it possesses a finite support with respect to the per-

mutation action (4.2). Write (X → Y) for the FM-set of all functions from

X to Y which are finitely supported with respect to the above permutation

action. �

The construction of the FM-set (X → Y) highlights the main difference

between FM-domain theory and classical domain theory: in the FM world,

we must be careful when forming subsets and function spaces to just ensure

that we remain within the world of objects with finite support.

64 4. Some FM-cpos and their construction

Definition 4.2.9 (Equivariant functions). For FM-sets X, Y say that f ∈
(X → Y) is equivariant iff for all permutations π, π · f = f . �

It is a consequence of this definition that f is equivariant just when for

all permutations π and all x ∈ dom(f), f(π · x) = π · (f(x)). We may also

refer to an equivariant function as ‘having empty support’, since clearly f is

equivariant just when supp(f) = ∅.

Definition 4.2.10 (Monotone and continuous functions). Take FM-cpos

X and Y and a finitely-supported function f from the underlying FM-set of

X to that of Y . Say f is monotone iff x vX x′ implies that f(x) vY f(x′).

Say f is continuous iff it is monotone and for each finitely-supported chain

(xn | n < ω) in X, f(
⊔

n<ω xn) =
⊔

n<ω(f(xn)). �

Definition 4.2.11 (Strict functions). Given FM-cppos X, Y and a finitely-

supported function f from the underlying FM-set of X to that of Y , say that

f is strict iff f(⊥X) = ⊥Y . �

Definition 4.2.12 (Strict continuous function spaces). Given FM-cppos

X and Y write X (Y for that FM-cppo specified as follows.

. Underlying set: all total, finitely-supported functions f ∈ (X→ Y) which

are both strict and continuous.

. Permutation action: is as for (X → Y).

. Partial order: is pointwise: f vX(Y f ′ iff for all x ∈ X, f(x) vY f ′(x).

. Least element: the constantly-bottom function. �

Remark 4.2.13. It must be remembered that an FM-cppo X (Y may well

contain many functions which are not equivariant. For example, consider

the FM-cppo 1⊥ whose underlying set consists of {⊥,>} with ⊥ v >, ⊥ v
⊥, > v >, π · ⊥ def= ⊥ and π · > def= >. This may be used to form the FM-

cppo 1⊥ (A⊥ whose elements will include functions mapping > to some

a ∈ A. Call such a function f . This function cannot have empty support,

because if it were to then for any permutation π and x ∈ 1⊥ we would have

π · (f(x)) = f(π ·x) = f(x). This cannot hold since we could set π to be any

permutation exchanging a with some different atom. �

Definition 4.2.14 (Dependent products). The dependent product of FM-

cppos Di indexed by a set I is the FM-cppo written as
∏

i∈I Di and specified

by the following.

4.2. Some FM-cpos and their construction 65

. Underlying set: All finitely-supported functions ρ with domain I such that

for all i ∈ I, ρ(i) lies in Di.

. Permutation action: is given by (π · ρ)(i) def= π ·Di (ρ(i)).

. Partial order: is pointwise: ρ v ρ′ iff for all i ∈ I, ρ(i) vDi ρ
′(i).

. Least element: That function mapping each i ∈ I to the least element of

Di. �

Definition 4.2.15 (Dependent smash products). The dependent smash

product of FM-cppos Di indexed by a set I is the FM-cppo
⊗

i∈I Di specified

as follows:

. Underlying set: All finitely-supported functions ρ with domain I such that

for all i ∈ I, ρ(i) lies in Di \ {⊥}; together with the least element (see

below).

. Permutation action: is given by (π · ρ(i)) def= π ·Di (ρ(i)).

. Partial order: is pointwise: ρ v ρ′ iff for all i ∈ I, ρ(i) vDi ρ
′(i).

. Least element: That function mapping each i ∈ I to the least element of

Di. �

Note that we place no restriction on the cardinality of the index set I

when constructing a dependent product or dependent smash product. One

must simply take care to ensure that each member of such a product is a

finitely-supported function out of I.

Two familiar notions which we shall require in §4.5 are those of embed-

dings and projections, defined as follows.

Definition 4.2.16 (Embeddings and projections). An embedding between

FM-cppos is a function e ∈ D (E for which there exists a (necessarily

uniquely-determined) second function p ∈ E (D, known as a projection,

such that p ◦ e = idD and e ◦ p v idE . �

4.2.3 Abstraction FM-cppos

We now come to the main novel construction of this section, that of abstrac-

tion FM-cppos. In order to perform this construction, we shall first establish

some preliminary results.

Definition 4.2.17. For each FM-cppo D, define the relation �D ⊆ (A×D)×
(A×D) as follows:

(a, d) �D (a′, d′) def⇔ ∃a′′ ∈ A \ supp(a, a′, d, d′). (a a′′) · d vD (a′ a′′) · d′.

66 4. Some FM-cpos and their construction

We write � rather than �D when the meaning is clear. �

We aim to show that � is a pre-order. To do this, we require a lemma

which establishes another example of the key ‘some/any’ property first seen

in §3.4.1.

Lemma 4.2.18. (a, d) � (a′, d′) ⇔ ∀a′′ ∈ A \ supp(a, a′, d, d′). (a a′′) · d vD

(a′ a′′) · d′.

Proof. The reverse direction follows immediately, since A \ supp(a, a′, d, d′)

is cofinite. For the forwards direction, since (a, d) � (a′, d′) then there exists

some a′′ ∈ A \ supp(a, a′, d, d′) such that (a a′′) · d vD (a′ a′′) · d′. Now

given any a′′′ ∈ A \ supp(a, a′, d, d′) then the equivariance of vD gives us

that (a′′ a′′′) · (a a′′) · d vD (a′′ a′′′) · (a′ a′′) · d′. But by virtue of Lemma 4.1.2

and the way we have selected a′′ and a′′′, this implies that (a a′′′) · d vD

(a′ a′′′) · d′. �

Lemma 4.2.19. The relation � is a pre-order.

Proof. It is clear that � is reflexive since vD is too. To see transitivity,

suppose (a, d) � (a′, d′) and (a′, d′) � (a′′, d′′). Then there exist atoms a1, a2

such that (a a1) · d vD (a′ a1) · d′ and (a′ a2) · d′ vD (a′′ a2) · d′′ with a1 ∈
A\supp(a, a′, d, d′) and a2 ∈ A\supp(a′, a′′, d′, d′′). But by Lemma 4.2.18 we

can deduce that for a3 ∈ A \ (a, a′, a′′, d, d′, d′′), (a a3) · d vD (a′ a3) · d′ and

(a′ a3) · d′ vD (a′′ a3) · d′′. We can now conclude immediately by transitivity

of vD. �

Definition 4.2.20. Given an FM-cppo D, define the relation ∼ ⊆ (A×D)×
(A×D) as follows:

(a, d) ∼ (a′, d′) def⇔ (a, d) � (a′, d′) ∧ (a′, d′) � (a, d). � (4.3)

It follows from Lemma 4.2.19 that ∼ is an equivalence relation; the pre-

order � induces a partial order on equivalence classes (a, d)/∼. Let us show

that such equivalence classes are closed under permuting atoms.

Lemma 4.2.21 (� is equivariant). (a, d) � (a′, d′) implies that for all

permutations π, (π(a), π ·D d) � (π(a′), π ·D d′).

Proof. Assume (a, d) � (a′, d′). That is to say, for some (or indeed any)

a′′ ∈ A\supp(a, a′, d, d′) then (a a′′)·d vD (a′ a′′)·d′. Given any permutation

4.2. Some FM-cpos and their construction 67

π the equivariance property (4.1) ofvD implies that (π(a) π(a′′))·(π·Dd) vD

(π(a′) π(a′′)) · (π ·D d′). This enables us to conclude that π · (a, d) � π · (a′, d′)
so long as π(a′′) lies in A \ supp(π(a), π(a′), π ·D d, π ·D d′). But this follows

by virtue of the condition on a′′. �

Corollary 4.2.22. The equivalence relation ∼ is equivariant.

Proof. Immediate from Lemma 4.2.21 and (4.3). �

We are now in a position to introduce the following important definition,

which forms one of the main novelties of this chapter.

Definition 4.2.23 (Abstraction FM-cppos). For any FM-cppo D, the atom-

abstraction FM-cppo [A]D is specified by the following.

. Underlying set: the set of equivalence classes (a, d)/∼ in A × D. Let us

write [a]d for one such equivalence class.

. Permutation action: π ·[A]D [a]d def= [π(a)]π ·D D. This correctly preserves

equivalence classes by virtue of Lemma 4.2.22.

. Partial order: [a]d v[A]D [a′]d′ def⇔ (a, d) � (a′, d′).

. Least element: the equivalence class [a]⊥D, for any a ∈ A. Note that

given any other a′ ∈ A then we have [a]⊥D ∼ [a′]⊥D. �

We can think of elements [a]d ∈ [A]D as representing elements of D

with one atom abstracted (bound); furthermore, these are identified up to

‘renaming of the bound atom’.

We must now proceed to verify that the construction in the definition

above does indeed satisfy the requirements for an FM-cppo. To do this, we

shall first require some additional lemmata.

Lemma 4.2.24. [a]d = [a′]d′ in [A]D just when3 either a = a′ ∧ d = d′ or

a 6= a′ ∧ a /∈ supp(d′) ∧ d = (a a′) · d′.

Proof. In the forwards direction, assume [a]d = [a′]d′. That is to say, for all

a′′ ∈ A\supp(a, a′, d, d′) then (a a′′)·d = (a′ a′′)·d′ inD. Now proceed by case

analysis. If a = a′ then (a a′′)·d = (a′ a′′)·d′ and so d = d′ by equivariance of

vD. For the other case, take a 6= a′. To see that a /∈ supp(d′), take any a′′ /∈
supp(a, a′, d, d′). Then a = (a′ a′′)·a = (a′ a′′)·(a a′′)·a′′. Since a′′ /∈ supp(d),

3Do not be fooled into thinking that this lemma generalises to the case of the partial

order relation v rather than just equality, for it does not. We explain why in §4.2.4.

68 4. Some FM-cpos and their construction

Lemma 4.1.12 implies that (a′ a′′) · (a a′′) · a′′ /∈ supp((a′ a′′) · (a a′′) · d). But

we also have that (a a′′) · d = (a′ a′′) · d′, so a /∈ supp((a′ a′′) · (a′ a′′) · d′) =

supp(d′). Then (a a′′)·d = (a′ a′′)·d′ implies (a a′′)·(a a′′)·d = (a a′′)·(a′ a′′)·
d′, so d = ((a a′′) · a′ (a a′′) · a′′) · (a a′′) · d′ = (a′ a) · (a a′′) · d′ = (a a′) · d′

(since a /∈ supp(d′)).

In the reverse direction, take atoms a, a′ and proceed again by case

analysis. When a = a′ and d = d′, the result follows easily by equivariance

ofvD. For the other case, take a 6= a′, a /∈ supp(d′) and d = (a a′)·d′. Taking

any a′′ ∈ A\(a, a′, d, d′) we have that (a a′′)·d = (a a′′)·(a a′)·d′ = (a′′ a′)·d′,
which implies [a]d = [a′]d′. �

Lemma 4.2.25. d vD d′ holds just when for any atom a, [a]d v[A]D [a]d′.

Proof. Given d vD d′ then we can always pick an atom a′ ∈ A \ supp(d, d′).

The result then follows from the equivariance of vD. A similar argument

applies in the reverse direction. �

Lemma 4.2.26. For an element [a]d in [A]D, then supp([a]d) ⊆ supp(d)\{a}.

Proof. We show that supp(d) \ {a} is a finite support (but not necessarily

the least such) for [a]d. Take any permutation π which fixes supp(d) \ {a}
pointwise. We wish to know that π · [a]d = [π(a)]π · d = [a]d. By Lemma

4.2.24 it therefore suffices to show that either a = π(a) ∧ d = π · d; or

a 6= π(a) ∧ a /∈ supp(π · d) ∧ d = (a π(a)) · (π · d). If a = π(a), it follows

that π fixes supp(d) pointwise and therefore π · d = d; we have the result

since in this case (a π(a)) is the identity.

In the case where a 6= π(a), we first wish to know that a /∈ supp(π · d).
Lemma 4.1.12 tells us that it suffices to prove a /∈ {π(a′) | a′ ∈ supp(d)}.
If this did not hold, then we would have a ∈ {π(a′) | a′ ∈ supp(d)}. Then

there would exist some a′ ∈ supp(d) such that a = π(a′); moreover, since

a 6= π(a) (and π is injective) then this implies a 6= a′. It follows that a′ ∈
supp(d) \ {a} and so π(a′) = a′. But then a = π(a′) = a′, which would

contradict our assumption that a 6= a′.

To complete the proof, we just need to show that in the a 6= π(a) case,

d = (a π(a)) · (π ·d). We do this by showing that the permutation (a π(a)) ·π
fixes all a′ ∈ supp(d) (for if it does this, it must fix d also). Proceed by

case analysis on a′. If a′ = a then the permutation is clearly the identity.

Otherwise, a′ is mapped to π(a′) by the permutation π. Since π fixes all

4.2. Some FM-cpos and their construction 69

atoms in supp(d)\{a}, then π(a′) = a′ (and this is not equal to a). Moreover,

π(a) cannot equal π(a′) since a 6= a′ and π is injective. Therefore (a π(a)) ·π
maps a′ to itself, as required. �

Lemma 4.2.27 (Supports in [A]D). Let [a]d be a member of [A]D. Then

supp([a]d) = supp(d) \ {a}.

Proof. By Lemma 4.2.26 it remains to show that supp([a]d) is not less than

supp(d) \ {a}. Without loss of generality suppose that supp(d) \ {a, a′} sup-

ports [a]d, for some a′ not equal to a and occurring in supp(d). Now consider

the permutation π which just exchanges a and a′, thus fixing supp(d)\{a, a′}
pointwise. It follows that π · [a]d = [a′](a a′) · d and because supp(d) \ {a, a′}
supports [a]d, we must have [a′](a a′) · d = [a]d. Applying Lemma 4.2.24, it

follows that a′ /∈ supp(d). But this contradicts the assumption above that a′

occurs in supp(d). �

Lemma 4.2.28 (Concretion). For each [a]d in [A]D and a′ ∈ A \ supp([a]d),

then there exists a unique d′ = (a a′) · d such that [a]d = [a′]d′. We call this d′

the concretion of [a]d at a′ and write it ([a]d) @ a′.

Proof. Since a′ ∈ A\supp([a]d) then Lemma 4.2.27 tells us that either a = a′,

or a 6= a′ and a′ /∈ supp(d). In the first case, d′ may be specified just by

d = (a a′) · d, meaning that [a]d = [a′]d′. Lemma 4.2.24 tells us that (in this

case) the equality only holds for this particular d′ and so it is unique. In the

case where a 6= a′ and a′ /∈ supp(d), we again appeal to Lemma 4.2.24 to

deduce that d′ = (a a′) · d is the unique d′ such that [a]d = [a′]d′. �

Lemma 4.2.29 (Supports of concretions). For a′ /∈ supp([a]d) then we have

supp(([a]d) @ a′) ⊆ supp([a]d) ∪ {a′}.

Proof. We wish to calculate supp((a a′) · d). Since a′ /∈ supp([a]d) then

Lemma 4.2.27 tells us that either a = a′, or a 6= a′ and a′ /∈ supp(d). If a = a′

then supp((a a′) · d) = supp(d) = supp([a]d)∪ {a} as required. If a 6= a′ and

a′ /∈ supp(d) then by inspection we see that supp((a a′) · d) cannot contain

a, but may contain a′. Therefore supp((a a′) · d) ⊆ supp(d) \ {a} ∪ {a′} =

supp([a]d) ∪ {a′}. �

Lemma 4.2.30 (Concretion order-preserving). If [a]d v[A]D [a′]d′ then

([a]d) @ a′′ vD ([a′]d′) @ a′′, for any a′′ ∈ A \ supp([a]d, [a′]d′).

70 4. Some FM-cpos and their construction

Proof. By Lemma 4.2.28 we know that [a]d = [a′′]([a]d@ a′′) = [a′′](a a′′) · d
and [a′]d = [a′′]([a′]d @ a′′) = [a′′](a′ a′′) · d′. Therefore [a′′](a a′′) · d v[A]D

[a′′](a′ a′′) · d′ and so by Lemma 4.2.25 we have that (a a′′) · d vD (a′ a′′) · d′

as required. �

Lemma 4.2.31. Given [a]d in [A]D and a′ 6= a′′ with a′, a′′ /∈ supp([a]d), then

(a′ a′′) · (([a]d) @ a′) = ([a]d) @ a′′.

Proof. By Lemma 4.2.28 we need to show that (a′ a′′) · (a a′) · d = (a a′′) · d.

But the left-hand side is equal to (a a′) · ((a a′) · a′ (a a′) · a′′) · d. This can be

shown to be equal to the right-hand side by a tedious case analysis, whose

details we omit. �

Lemma 4.2.32. Any finitely-supported chain ([an]dn | n < ω) in [A]D pos-

sesses a least upper bound which may be constructed as [a]
⊔

n<ω(([an]dn)@a),

for any a /∈ supp ([an]dn | n < ω).

Proof. For all n < ω, a /∈ supp([an]dn) and therefore we can concrete each

element of the chain at a. By Lemma 4.2.30 this forms another chain

in D, namely (([an]dn) @ a | n < ω). This chain is also finitely supported,

since by Lemma 4.2.29 we have that supp([an]dn) @ a) ⊆ supp([an]dn) ∪
{a} for all n < ω. (The new chain is thus finitely supported by the set

supp ([an]dn | n < ω) ∪ {a}.) It follows that this chain has a least upper

bound given by
⊔

n<ω(([an]dn) @ a) and for all n < ω, ([an]dn) @ a vD⊔
n<ω(([an]dn) @ a). It follows by Lemma 4.2.25 that [a](([an]dn) @ a) v

[a]
⊔

n<ω(([an]dn) @ a) for all n < ω; thus, [a]
⊔

n<ω(([an]dn) @ a) is an

upper bound for the chain in [A]D. To see that it is the least such, suppose

that there is some other upper bound [a′]d′ so that [an]dn v [a′]d′ for all

n < ω. We wish to show that [a]
⊔

n<ω(([an]dn) @ a) v [a′]d′, which we

can do by choosing a′′ ∈ A \ supp(a, a′, ([an]dn | n < ω)) and showing that

(a a′′) ·
⊔

n<ω(([an]dn) @ a) v (a′ a′′) · d′. The left-hand side of this is equal

to
⊔

n<ω((a a′′) · (([an]dn) @ a)) =
⊔

n<ω(([an]dn) @ a′′) by Lemmata 4.1.17

and 4.2.31. Next, Lemma 4.2.30 together with the assumption that [a′]d′ is

an upper bound tells us that for all n < ω, ([an]dn) @ a′′ vD ([a′]d′) @ a′′. In

particular, we therefore have that
⊔

n<ω(([an]dn) @ a′′) vD ([a′]d′) @ a′′. But

Lemma 4.2.28 tells us that the right-hand side of this is equal to (a′ a′′) · d′

as we require. �

Lemma 4.2.33. [A]D is an FM-cppo.

4.2. Some FM-cpos and their construction 71

Proof. This splits into several parts, as follows.

I Finite support property. By Lemma 4.2.27.

I Least upper bounds of finitely-supported chains. By Lemma 4.2.32.

I Equivariance of v[A]D. Follows by virtue of its definition and Lemma

4.2.21.

I Pointedness. The FM-cppo D possesses a least element ⊥ which has

empty support. It follows from Lemma 4.2.25 that the least element in [A]D

is specified by [a]⊥ for any a ∈ A.

[A]D therefore satisfies all of the requirements for an FM-cppo. �

4.2.4 Some curiosities

FM-domain theory—and abstraction FM-cppos in particular—contain some

deep subtleties. Here we identify two traps for the unwary.

First, note that given some FM-cpo D and d vD d′ then we do not

necessarily have that supp(d) ⊆ supp(d′). A simple example is given when

D is the atom-abstraction FM-cpo [A]P , where P is the FM-cpo with under-

lying FM-set P(A) (viz. Definition 4.1.7) and partially-ordered by inclusion.

Choosing distinct atoms a0, a1, the fact that {a0} ⊆ (A \ {a1}) means we

can construct a chain in [A]P starting as follows:

[a1]a0 v [a1](A \ {a1}) v · · ·

(This chain has an overall finite support, namely the set {a0}—the crucial

observation here being that the cofiniteness of A \ {a1} implies that it is

finitely supported by {a1}.) We now have that

supp([a1]a0) ⊇ supp([a1](A \ {a1})) ⊇ · · ·

which shows that the elements’ support is not monotonically-increasing.

Our second example is the following false lemma—a version of Lemma

4.2.24 with v substituted for =.

Lemma 4.2.34 (False). [a]d v [a′]d′ in [A]D just when either a = a′ ∧ d v d′

or a 6= a′ ∧ a /∈ supp(d′) ∧ d v (a a′) · d′. �

To see an example of why this lemma fails to hold, take distinct atoms

a1, a2, a3 and construct the chain in [A]P starting as

[a3]{a1} v [a1](A \ {a2, a3}) v · · ·

72 4. Fixed points

We can now see that: a3 6= a1; a3 ∈ supp(A \ {a2, a3}) and moreover, since

(a3 a1) ·(A\{a2, a3}) = A\{a1, a2} then {a1} 6v (a3 a1) ·supp(A\{a2, a3})—
contradicting the False Lemma.

4.3 Fixed points

As is usual in denotational semantics, we shall require the notion of fixed

point to give a meaning to recursively-defined functions. We will be needing

two constructions of fixed points: that given by continuous functions on

finitely-supported chains and that given by monotone functions on FM-

complete lattices.

Definition 4.3.1. Given some FM-cppo D and a monotone function f ∈
(D→ D), say that an element d ∈ D is a pre-fixed point for f iff f(d) v d.

Say d is a fixed point for f iff f(d) = d. �

Definition 4.3.2. Given an FM-cppo D and a function f ∈ (D→D), define

fn(d) by induction on n as follows:

f0(d) def= d fn+1(d) def= f(fn(d)). �

Lemma 4.3.3 (Fixed points on chains). For an FM-cppo D, each continuous

function f ∈ (D → D) possesses a least fixed point fix(f) which may be

constructed as
⊔

n<ω f
n(⊥), with supp(fix(f)) ⊆ supp(f).

Proof. We must first show that (fn(⊥) | n < ω) is a finitely-supported chain

in D in order for a least upper bound to exist. To do this, let us prove

by induction that supp(fn(⊥)) ⊆ supp(f) for arbitrary n < ω. We always

have supp(⊥) ⊆ supp(f). Assuming that supp(fn(⊥)) ⊆ supp(f), we can

prove supp(fn+1(⊥)) ⊆ supp(f) by showing that every permutation which

fixes supp(f) pointwise also fixes fn+1(⊥). Taking such a permutation π,

observe that the assumption gives us that π · fn(⊥) = fn(⊥); therefore

fn(⊥) = π−1 · fn(⊥). We also know that π · f = f . It follows (using

Definition 4.2.7) that π · f(fn(⊥)) = (π · f)(π−1 · fn(⊥)) = f(fn(⊥)) =

fn+1(⊥) as required. Therefore (fn(⊥) | n < ω) is finitely supported and

indeed supp(fix(f)) ⊆ supp(f). That fix(f) is a least fixed point is a standard

proof and we omit the remaining details. �

The following lemma is an adaptation of the famous Tarski-Knäster fixed

point theorem to the setting of FM-domain theory.

4.4. Categorical constructions 73

Lemma 4.3.4 (Fixed points on lattices). Given an FM-complete lattice D,

each monotone function f ∈ (D→D) possesses a least fixed point fix(f) which

may be constructed as ⊔{d ∈ D | f(d) v d} (we use ⊔to indicate a greatest

lower bound).

Proof. The proof is standard and we omit the details, save for one crucial

point. In order for the set S def= {d ∈ D | f(d) v d} to have a greatest

lower bound in the FM-complete lattice, it is necessary for it to be finitely

supported. That this is so follows from the fact that supp(S) ⊆ supp(f). To

see this, take any permutation π which fixes supp(f) pointwise. We need to

show that for all s ∈ S then π · s ∈ S. If s ∈ S then f(s) v s and therefore

π · f(s) v π · s, which is equivalent to stating (π · f)(π · s) v π · s. Since π

fixes f , then we have f(π · s) v π · s in D; thus, π · s ∈ S. of S. �

It is interesting to note that we can derive equivariance properties of

fixed points without considering their explicit construction: the important

property is that they are indeed fixed points. The following lemma high-

lights this: the result can be obtained not only by the proof given but also as

a corollary of the proof of Lemma 4.3.4 above. We give this specific example

since it is used in the next chapter to reason about an FM-complete lattice

of relations.

Lemma 4.3.5. Given an FM-complete lattice D and a monotone function f ∈
(D→D) with supp(f) = ∅, then supp(fix(f)) = ∅.

Proof. Take any atoms a, a′ and observe (a a′) ·fix(f) = (a a′) · (f(fix(f))) =

f((a a′) · fix(f)). Therefore (a a′) · fix(f) is a fixed point of f . It is also equal

to fix(f), because (a a′)·fix(f) v fix(f) holds just when fix(f) v (a a′)·fix(f)

by equivariance of v. �

4.4 Categorical constructions

Whilst we do not provide a categorical presentation of our denotational

semantics, a modicum of category theory will be required in the next chap-

ter. In order to do this, we now make several definitions which consist of

transferring familiar categorical concepts into the FM setting.

Definition 4.4.1 (The category FM-Cpo). We take FM-cpos as the objects

of the category; the morphisms f : X −→ Y are equivariant functions

f ∈ (X → Y). �

74 4. Categorical constructions

Definition 4.4.2 (The category FM-Cpo⊥). We take FM-cppos as the ob-

jects of the category; the morphisms f : X ◦−→ Y are strict, equivariant

functions f ∈ (X → Y). �

It is in fact the case that working in FM-Cpo is equivalent to working in

the functor category CpoI, where I is the category of finite sets of A and

injections between them. Elements of FM-Cpo correspond to elements of

CpoI which preserve pullbacks.

Definition 4.4.3 (LFC-functors). A locally FM-continuous functor (known

as an LFC-functor) F : FM-Cpo⊥ −→ FM-Cpo⊥ is specified by the following

information: for each FM-cppo D, another FM-cppo F (D); and for each

function f ∈ D (E, a function F (f) ∈ F (D) (F (E) preserving identities

and composition such that the following conditions are satisfied. Given f v
f ′ ∈ D (E then we must have F (f) v F (f ′) ∈ F (D) (F (E). For any

finitely-supported chain (fn | n < ω) in D (E, F (
⊔

n<ω fn) must equal⊔
n<ω(F (fn)). Finally for all permutations π then π · F must equal F—that

is to say, for each function f ∈ D (E then π · (F (f)) = F (π · f). �

Definition 4.4.4 (Mixed-variance LFC-functors). A mixed-variance LFC-

functor F : FM-Cpoop
⊥ ×FM-Cpo⊥ −→ FM-Cpo⊥ is specified by the following

information: for each pair of FM-cppos (D,E), another FM-cppo F (D,E);

and for each pair of functions (f, g) ∈ (E (D) × (D (E), a function

F (f, g) ∈ F (D,D) (F (E,E) such that: F (idD, idD) = idF (D,D); and

for additional functions f ′ ∈ E′ (E and g′ ∈ E (E′, then F (f ′, g′) ◦
F (f, g) = F (f ◦ f ′, g′ ◦ g). These actions must also satisfy the following

conditions. Given f v f ′ ∈ E (D and g v g′ ∈ D (E then we require

F (f, g) v F (f ′, g′) ∈ F (D,D) (F (E,E). For any finitely-supported chain

((fn, gn) | n < ω) in (E (D) × (D (E), then F (
⊔

n<ω fn,
⊔

n<ω gn) must

equal
⊔

n<ω(F (fn, gn)). Finally, for all permutations π and functions (f, g) ∈
(E (D)× (D (E) then we must have π · F (f, g) = F (π · f, π · g). �

Notation 4.4.5. Write λx. t for that function which acts as λx. t except that

(λx. t)(⊥) def= ⊥. Extend this notation in the obvious way to write λ〈d1, d2〉. t
for strict functions in D1 ⊗ D2 (D and λ[a]d. t for strict functions in

[A]D (D′. Note that this notation imposes no conditions as to which

particular representative in [A]D is chosen. Recall that we write 〈d1, d2〉
to indicate the construction of a smash pair (such that 〈d1, d2〉

def= ⊥D1⊗D2

when either of d1 ∈ D1 and d2 ∈ D2 are bottom). �

4.4. Categorical constructions 75

Lemma 4.4.6. The following operations, here expressed in terms of their ac-

tions on objects and morphisms, determine LFC-functors.

lifting (–)⊥ FM-Cpo⊥ −→ FM-Cpo⊥
D 7→ D⊥ f 7→ λx. f(x).

atom-abstraction [A](–) FM-Cpo⊥ −→ FM-Cpo⊥
D 7→ [A]D

f 7→ λd. [a]f(d@ a) where a ∈ A \ supp(d, f).

smash product (–)⊗ (–) FM-Cpo⊥ × FM-Cpo⊥ −→ FM-Cpo⊥
(D,E) 7→ D ⊗ E (f, g) 7→ λ〈d, e〉. 〈f(d), g(e)〉.

coalesced sum (–)⊕ (–) FM-Cpo⊥ × FM-Cpo⊥ −→ FM-Cpo⊥
(D,E) 7→ D ⊕ E

(f, g) 7→ λs.

f(d) if s = in1(d);

g(e) if s = in2(e).

strict function space (–) ((–) FM-Cpoop
⊥ × FM-Cpo⊥ −→ FM-Cpo⊥

(D,E) 7→ D (E (f, g) 7→ λh. g ◦ h ◦ f.

Proof. We provide the only case which differs significantly from classical

domain theory, that for atom-abstraction.

I Preservation of identities. Observe that

([A]idD)([a]d) = [a′](([a]d) @ a′) by definition of [A]–,

with a′ ∈ A \ supp(a, d)

= [a′](a a′) · d by definition of @

= [a]d by Lemma 4.2.28.

I Preservation of composition. Take f ∈ D (D′ and g ∈ D′ (E, so4:

[A](g ◦ f)([a]d) =

= [a′]((g ◦ f)(([a]d) @ a′)) by definition of [A]–,

with a′ ∈ A \ supp(a, d, f, g)

4Note that when we need to satisfy the condition a′ ∈ A \ supp([a]d, f) (arising from

the action of [A]– on morphisms) at the second proof step, we impose a stronger condition

to ensure that a′ is fresh for g (and indeed a) as well. This a′ then automatically satisfies

the same side condition which arises in connection with g. That we are able to do this is

another example of the ‘some/any’ property of choosing fresh atoms which runs throughout

FM-domain theory. It is also evident in the Continuity and Equivariance proof cases.

76 4. Categorical constructions

= [a′]((g ◦ f)((a a′) · d)) by definition of @

= [a′]((a′ a′) · ((g ◦ f)((a a′) · d))) (a′ a′) is the identity

= ([A]g ◦ [A]f)([a]d) as a′ /∈ supp([a′]f((a a′) · d), g).

We now check that [A]– is a continuous equivariant operator on finitely-

supported chains (fn ∈ D (E | n < ω).

I Monotonicity. Take f v f ′ ∈ D (E. We wish to know that [A]f v
[A]f ′; that is to say for all [a]d ∈ [A]D then ([A]f)([a]d) v ([A]f ′)([a]d).

Take any a′ ∈ A \ supp([a]d, f, f ′). Then ([A]f)([a]d) = [a′]f((a a′) · d) and

([A]f ′)([a]d) = [a′]f ′((a a′) · d). By Lemma 4.2.25 it now suffices to show

f((a a′) · d) v f ′((a a′) · d) to get the result. But this follows since f v f ′.

I Continuity. We wish to know that [A]
⊔

n<ω fn =
⊔

n<ω[A]fn. That is

to say, for all [a]d then ([A]
⊔

n<ω fn)([a]d) = (
⊔

n<ω[A]fn)([a]d). Taking the

left-hand side together with some a′ ∈ A \ supp (fn | n < ω) \ supp([a]d) we

obtain

([A]
⊔
n<ω

fn)([a]d) = [a′](
⊔
n<ω

fn)((a a′) · d) by definition of [A]–, as

a′ /∈ supp(
⊔

n<ω fn, [a]d)

= [a′]
⊔
n<ω

fn((a a′) · d) lubs in D (E

=
⊔
n<ω

[a′]fn((a a′) · d) by Lemma 4.2.32

=
⊔
n<ω

([A]fn)([a]d) by definition of [A]–, as

∀n, a′ /∈ supp(fn, [a]d)

= (
⊔
n<ω

[A]fn)([a]d) lubs in [A]D ([A]E.

I Equivariance. We wish to know that for all permutations π and functions

f ∈ D (E, π · [A]f = [A]π · f . This holds when π · ([A]f([π−1 ·a]π−1 ·d)) =

[A](π · f)([a]d) for any [a]d ∈ [A]D. Taking any a′ ∈ A \ supp([π−1(a)]π−1 ·
d, f) then the definition of [A]– implies that the left-hand side of this is equal

to π · [a′]f((π−1(a) a′) ·π−1 ·d). This is equivalent to [π(a′)]π · (f((π−1(a) a′) ·
π−1 · d)) by virtue of the permutation action on [A]D. Recalling that π ·
f(π−1 ·x) = (π ·f)(x) then we can simplify this to [π(a′)](π ·f)((a π(a′)) ·d).
Next, Lemma 4.1.12 tells us that a′ ∈ A \ supp([π−1(a)]π−1 · d, f) holds just

when π(a′) ∈ A \ supp([a]d, π · f). We are now done since we can calculate

that [π(a′)](π · f)((a π(a′)) · d) = [A](π · f)([a]d) (we use π(a′) to satisfy the

side-condition on [A]–). �

4.5. Solution of recursive equations on FM-cppos 77

4.5 Solution of recursive equations on FM-cppos

Perhaps the most important technique in the application of domain theory

to the semantics of programming languages is the solution of recursive do-

main equations[64]. This technique enables us to construct domains whose

elements are the denotations of values of user-defined recursive datatypes.

The seminal example is the discovery by Scott of a non-trivial solution to

the recursive domain equation D ∼= (D→D) in order to represent terms of

the λ-calculus.

In the next chapter we will need to solve recursive equations on FM-

cppos. In general, such an equation takes the form Φ(D) ∼= D, where Φ

is built up from the constructors (–)⊥ (lifting), [A](–) (atom-abstraction),

(–) ⊗ (–) (smash product), (–) ⊕ (–) (coalesced sum) and (–) ((–) (strict

continuous function space) together with occurrences of the variable D.

What we would like is for Φ to determine an LFC-functor in itself; however,

this may not be the case since D might occur in both covariant and con-

travariant positions. In order to get around this problem, we follow Pitts[46]

and rewrite Φ to an LFC-functor F (D−, D+) : FM-Cpoop
⊥ × FM-Cpo⊥ −→

FM-Cpo⊥ by replacing all occurrences of D in contravariant position with

D− and all occurrences of D in covariant position with D+. The resulting F

is then indeed functorial and it suffices to find an FM-cppo D equipped with

an isomorphism i : F (D,D) ∼= D.

The question, of course, is which solution to choose if there is more than

one: we wish for one which it is canonical in some sense. The following

notion of minimal invariants captures this idea of canonicity.

Definition 4.5.1 (Minimal invariant property). The solution (i,D) to the

recursive equation F (D,D) ∼= D has the minimal invariant property if the

least fixed point fix(φ) of the strict continuous function φ ∈ (D (D) (

(D (D) defined by φ(f) def= i ◦ F (f, f) ◦ i−1 is the identity on D. �

We now prove the following theorem in full. Whilst the proof is arguably

standard, we believe that our presentation is elegant in the sense that it cuts

down to the bare minimum required to establish the result.

Theorem 4.5.2. Let F : FM-Cpoop
⊥ × FM-Cpo⊥ −→ FM-Cpo⊥ be an LFC-

functor. Then there exists a solution (i,D) satisfying the minimal invariant

property with i : F (D,D) ∼= D and which is unique up to isomorphism.

78 4. Solution of recursive equations on FM-cppos

Proof. By virtue of F being an LFC-functor, it is a continuous operator on

chains of morphisms and therefore given any embedding-projection pair

(e : D ◦−→ E, p : E ◦−→ D) we can form another such pair (F (p, e) :

F (D,D) ◦−→ F (E,E), F (e, p) : F (E,E) ◦−→ F (D,D)) with F (p, e) ◦
F (e, p) v idF (D,D) and F (e, p) ◦ F (p, e) = idF (E,E). Since the one-element

FM-cppo {⊥} is initial for embeddings (the unique morphism being given by

the least element of {⊥} (D for each FM-cppo D), we can build a chain

of embedding-projection pairs as follows:

D0

e0 //
D1

e1 //

p0

oo D2

e2 //

p1

oo · · ·
p2

oo (4.4)

where D0
def= {⊥}, Dn+1

def= F (Dn, Dn), e0 is the unique element of {⊥} (

D, p0 is the unique element of D1 ({⊥}, en+1
def= F (pn, en) and pn+1

def=

F (en, pn). Now define functions pnm : Dn ◦−→ Dm and enm : Dn ◦−→ Dm

as follows.

pnm
def=

idDn if m = n;

p(n−1)m ◦ pn if m < n.
enm

def=

idDn if m = n;

e(n+1)m ◦ en if m > n.

This enables us to form an FM-cppo with underlying set

D
def=

{
d ∈

∏
n<ω

Dn

∣∣∣∣∣ d has finite support

and for all m ≤ n < ω, πm(d) = pnm(πn(d))

}
(4.5)

where the πn (n < ω) are the usual projections out of a member of the

dependent product (and the ordering together with the permutation action

is inherited from Definition 4.2.14). Even though this is a subset of an

infinitely-indexed product, it is a legal construction because every element

is finitely supported.

Next define a second set of embeddings e′n : Dn ◦−→ D and their

associated projections p′n : D ◦−→ Dn as follows:

e′n(dn) def= (xm |m < ω), given xm
def=

pnm(dn) if m 6 n

enm(dn) if m > n;

p′n(d) def= πn(d)

where we write (xm |m < ω) for the tuple (x0, x1, . . .). A consequence of

4.5. Solution of recursive equations on FM-cppos 79

these definitions is that

e′n(p′n(d)) def= (xn
m |m < ω), given xn

m
def=


pnm(πn(d)) if m < n

πn(d) if m = n

enm(πn(d)) if m > n.

Recalling that the least upper bound of a chain is unaffected by removing

finitely many elements from the start of the chain, calculate as follows.

(
⊔
n<ω

(e′n ◦ p′n))(d) =
⊔
n<ω

(e′n ◦ p′n)(d) =
⊔
n<ω

(xn
m |m < ω)

= (
⊔
n<ω

xn
m |m < ω) = (

⊔
m<n<ω

xn
m |m < ω)

= (
⊔

m<n<ω

(pnm ◦ πn)(d) |m < ω)

= (
⊔

m<n<ω

πm(d) |m < ω)

= (πm(d) |m < ω) = d.

We now have the important results that

p′n ◦ e′n = idDn (4.6)⊔
n<ω

e′n ◦ p′n = idD. (4.7)

The equality (4.7) is the crux. Define the strict continuous functions i :

F (D,D) ◦−→ D and j : D ◦−→ F (D,D) as follows:

i =
⊔
n<ω

e′n+1 ◦ F (e′n, p
′
n) and j =

⊔
n<ω

F (p′n, e
′
n) ◦ p′n+1.

Now using (4.7) we have

i ◦ j =
⊔
n<ω

e′n+1 ◦ F (e′n, p
′
n) ◦ F (p′n, e

′
n) ◦ p′n+1

=
⊔
n<ω

e′n+1 ◦ idF (Dn,Dn) ◦ p′n+1

=
⊔
n<ω

e′n+1 ◦ p′n+1 = idD.

Composing i and j around the other way and using (4.7) together with the

local continuity and functorality of F , we have

j ◦ i =
⊔
n<ω

F (p′n, e
′
n) ◦ p′n+1 ◦ e′n+1 ◦ F (e′n, p

′
n)

=
⊔
n<ω

F (p′n, e
′
n) ◦ idD ◦ F (e′n, p

′
n)

80 4. Solution of recursive equations on FM-cppos

=
⊔
n<ω

F (p′n, e
′
n) ◦ F (e′n, p

′
n)

=
⊔
n<ω

F (e′n ◦ p′n, e′n ◦ p′n)

= F (
⊔
n<ω

e′n ◦ p′n,
⊔
n<ω

e′n ◦ p′n)

= F (idD, idD) = idF (D,D).

Therefore i is an isomorphism; from now on let us write i−1 instead of j.

Now note that since pmn = pn ◦ · · · ◦pm−1 and enm = em−1 ◦ · · · ◦en, we have

F (pmn, enm) = F (pm−1, em−1) ◦ · · · ◦ F(pn, en) = em ◦ · · · ◦ en+1. Similarly,

F (enm, pmn) = pn+1 ◦ · · · ◦pm. Furthermore, for k 6 n 6 m one can show by

expansion of function compositions that pmk ◦ enm = pk ◦ · · · ◦ pn−1 = pnk.

Similarly, if n < k 6 m or n 6 m < k then pmk ◦ enm = enk. Combining all

of these facts yields that e′m ◦ enm = e′n when n 6 m. In a similar vein, (4.5)

immediately gives us that pmn ◦ p′m = p′n when n 6 m. We can use this and

the previous results to calculate as follows.

i ◦ F (p′n, e
′
n) =

⊔
m<ω

e′m+1 ◦ F (e′m, p
′
m) ◦ F (p′n, e

′
n)

=
⊔

n6m<ω

e′m+1 ◦ F (p′n ◦ e′m, p′m ◦ e′n)

=
⊔

n6m<ω

e′m+1 ◦ F (pmn, enm)

=
⊔

n6m<ω

e′m+1 ◦ em ◦ · · · ◦ en+1

=
⊔

n6m<ω

e′m+1 ◦ e(n+1)(m+1)

=
⊔

n6m<ω

e′n+1 = e′n+1.

Symmetrically, we can also calculate the following.

F (e′n, p
′
n) ◦ i−1 =

⊔
m<ω

F (e′n, p
′
n) ◦ F (p′m, e

′
m) ◦ p′m+1

=
⊔

n6m<ω

F (p′m ◦ e′n, p′n ◦ e′m) ◦ p′m+1

=
⊔

n6m<ω

F (enm, pmn) ◦ p′m+1

=
⊔

n6m<ω

pn+1 ◦ · · · ◦ pm ◦ p′m+1

=
⊔

n6m<ω

p(m+1)(n+1) ◦ p′m+1

=
⊔

n6m<ω

p′n+1 = p′n+1.

4.5. Solution of recursive equations on FM-cppos 81

We are now in a position to see that (D, i) has the minimal invariant prop-

erty. It suffices to show that for all n < ω then e′n ◦p′n = φn(⊥D(D) since we

can then use (4.7) to deduce that idD =
⊔

n<ω e
′
n ◦p′n =

⊔
n<ω φ

n(⊥D(D) =

fix(φ) as required. By the functorality of F and the results above,

e′n+1 ◦ p′n+1 = i ◦ F (p′n, e
′
n) ◦ F (e′n, p

′
n) ◦ i−1

= i ◦ F (e′n ◦ p′n, e′n ◦ p′n) ◦ i−1.

We can now proceed by induction on n to show that φn(⊥) equals i ◦F (e′n ◦
p′n, e

′
n ◦ p′n) ◦ i−1. The base case (n = 0) follows immediately by observing

that for any d ∈ D then p′0(d) = ⊥ and thus e′0 ◦ p′0 = ⊥D(D by strictness

of e′0. For the inductive step, assume φn(⊥) = i ◦ F (e′n ◦ p′n, e′n ◦ p′n) ◦ i−1.

From above, we know that the right-hand side of this is equal to e′n+1 ◦p′n+1.

Therefore

φn+1(⊥) = i ◦ F (φn(⊥), φn(⊥)) ◦ i−1

= i ◦ F (e′n+1 ◦ p′n+1, e
′
n+1 ◦ p′n+1) ◦ i−1

which gives the desired result. To see that the solution (i,D) is unique up

to isomorphism, suppose there is another solution (i′, E) with the minimal

invariant property and consider the following diagram

(E (D)× (D (E) ε //

m

��

(E (E)× (D (D)

n

��
(E (D)× (D (E) ε // (E (E)× (D (D)

where the maps ε, m and n are defined as follows.

ε : (f−, f+) 7→ (f+ ◦ f−, f− ◦ f+)

m : (f−, f+) 7→ (i ◦ F (f+, f−) ◦ i′−1, i′ ◦ F (f−, f+) ◦ i−1)

n : (f−, f+) 7→ (i′ ◦ F (f−, f−) ◦ i′−1, i ◦ F (f+, f+) ◦ i−1)

Given these definitions it is easy to see that the diagram commutes. Now

recall Plotkin’s uniformity principle which states that for functions d ∈ (D→
D), e ∈ (E → E) and f ∈ D (E such that e ◦ f = f ◦ d, then fix(e) =

f ◦ fix(d). Since ε is clearly strict whilst m and n are continuous (as the

82 4. FM-sets of syntax

isomorphisms i, i′ are also and the functor F is an LFC-functor) then we can

apply this principle to the diagram above to deduce that ε(fix(m)) = fix(n).

Writing (g−, g+) for fix(m), observe that ε(fix(m)) = (g+ ◦ g−, g− ◦ g+) =

fix(n) = (idE , idD) since (i,D) and (i′, D′) both have the minimal invariant

property. Moreover since fix(m) = m(fix(m)) we have that (g−, g+) = (i ◦
F (g+, g−) ◦ i′−1, i′ ◦ F (g−, g+) ◦ i−1), meaning that the following diagram

commutes.

F (D,D) i //

F (g+◦g−,g−◦g+)

��

D

(g−,g+)

��
F (E,E) i′ // E

(g+,g−)

OO

We therefore have a mediating isomorphism between D and E. �

4.6 FM-sets of syntax

So far in this chapter we have considered FM-sets of domain-theoretic ob-

jects. However, it is important to remember that we can also form FM-sets

of syntactic entities. In particular, the expressions of Mini-FreshML form an

FM-set Exp: the permutation action is given simply by recursively traversing

the structure of the expression in question and applying the permutation to

any atoms encountered. With respect to this action, it is easy to see that

each expression is finitely supported. Since there are no constructs which

bind atoms in Mini-FreshML, then the support supp(e) of some e ∈ Exp is

equal to the atoms atms(e) of e. In a similar manner, we can form an FM-set

consisting of the frame stacks of Chapter 3.

In the next chapter, we will see how our denotational semantics does in

fact determine equivariant functions on FM-sets of syntax. There, we will

use the notation aB e to indicate that a /∈ supp(e) (and similarly for frame

stacks and expressions).

5 Mini-FreshML, denotationally

‘A mathematician is a

machine for turning coffee

into theorems.’ —Erdös

In the previous chapter we developed a variety of domain theory which we

claimed was good for reasoning about names and name binding. In this

chapter we support this claim by using it to give a denotational semantics

to Mini-FreshML. Our semantics is computationally adequate, meaning that

equality of denotation implies observational equivalence. This property will

enable us to use the denotational semantics to derive operational equiva-

lence results of the type conjectured in Chapter 3.

The major contributions of this chapter are twofold. Firstly, we demon-

strate how a standard monad of continuations may be used[61] to provide

a model of dynamic allocation. Secondly, we demonstrate how expressions

and values in the Mini-FreshML metalanguage correspond to α-equivalence

classes of object language terms which we aim to manipulate.

5.1 An overview

In order to model the computational effect of generating fresh names, our

denotational semantics is monadic in the sense of Moggi[38]. This means

that we distinguish between values and computations. Values of some type

τ correspond to elements of an FM-cppo [[τ]], whilst computations of type τ

correspond to elements of an FM-cppo T[[τ]], where T is a standard monad

of continuations.

Given that we are attempting to model the dynamic allocation of names,

it may come as a surprise to the reader that we are not using a traditional

dynamic allocation monad[37] which keeps track of the names generated

during some computation. The reason we do not have to do this is that the

finite support properties exhibited by objects in FM-domain theory enable us

83

84 5. An overview

to keep the allocated names implicit. This fits well with the operational se-

mantics based on frame-stacks of §3.4. Furthermore, FM-domain theory has

so far resisted attempts to construct standard dynamic allocation monads

within it, as we shall see in §5.1.1.

Let us consider in more detail how we can denote values, expressions

and frame stacks. To each Mini-FreshML type τ let us assign an FM-cppo

[[τ]]. (We provide the exact definition of this map in due course.) Then we

can define the denotation [[Γ]] of a typing context Γ as the dependent smash

product

[[Γ]] def=
⊗

x∈dom(Γ)

[[Γ(x)]].

We treat a non-bottom ρ ∈ [[Γ]] as a finitely supported function mapping each

x ∈ dom(Γ) to an element ρ(x) 6= ⊥ of the FM-cppo [[Γ(x)]]. Then for values

v, frame stacks S and expressions e satisfying Γ ` v : τ , Γ `s S : τ (

and Γ ` e : τ respectively we provide finitely supported functions of the

following kinds:

V[[Γ ` v : τ]] ∈ [[Γ]] ([[τ]]

S[[Γ `s S : τ (]] ∈ [[Γ]] ([[τ]]⊥

E [[Γ ` e : τ]] ∈ [[Γ]] ([[τ]]⊥⊥

where we define D⊥ def= D (1⊥ for each FM-cppo D. FM-cppos [[τ]] are

the domains of values of type τ whilst FM-cppos [[τ]]⊥⊥ are the domains of

computations of type τ .

Intuitively, a non-bottom element d ∈ [[τ]] corresponds to a value of type

τ . An element σ ∈ [[τ]]⊥ corresponds to a stack accepting a value of type τ

and returning> for termination, or⊥ for divergence. Since the behaviour of

expressions is determined by the enclosing frame stack, the denotation ε ∈
[[τ]]⊥⊥ of some expression in context is a function that accepts the denotation

of a frame stack in context and returns either > or ⊥. Thus, the denotations

of expressions in context lie in the underlying set of a continuation monad

(D (R) (R, where the ‘result’ set R is 1⊥.

Although we shall not use them explicitly when giving our semantics1,

we do of course have the following standard monad operations.

1Only since when calculating in proofs, we have found it necessary to work with the

‘macro-expanded’ version of these: our definitions reflect this as we shall see in due course.

Simply a ‘design decision’ as they say in the industry.

5.1. An overview 85

I Unit. For d ∈ D, return d def= λσ ∈ D⊥. σ(d).

I Kleisli lift. For e ∈ D⊥⊥, f ∈ D (E⊥⊥ then

let x⇐ e in f x def= λε ∈ E⊥. e(λd ∈ D. f d ε)

such that (let x⇐ e in f x) ∈ E⊥⊥.

We noted earlier that the continuation monad is sufficient to model

the dynamic allocation of names—which, as in the operational semantics,

will be modelled by atoms a ∈ A. This may only be done thanks to the

finite support property of FM-cppos, namely given some FM-cppo D and

any d ∈ D then we can always find some ‘fresh’ atom a which does not

occur in the support of d. In particular, given the denotation of some frame

stack in context σ ∈ [[τ]]⊥ then we can always pick some a /∈ supp(σ). The

‘operational’ intuition behind this specific case is that such an a corresponds

to some atom not yet allocated during the evaluation process. In a nutshell,

the denotation of the frame stack encapsulates, via its support, all

of the necessary information about ‘generated’ names at runtime.

Writing [[name]] for the FM-cppo of atoms, constructed as [[name]] = A⊥,

define an element new ∈ [[name]]⊥⊥ such that new(σ ∈ [[name]]⊥) def= σ(a) for

any a /∈ supp(σ). We may always pick such an a because for any σ, supp(σ)

is finite and thus A \ supp(σ) is cofinite. Moreover, given some σ ∈ [[name]]⊥

then the result σ(a) is the same no matter which representative a /∈ supp(σ)

is chosen. For given any a′ /∈ supp(σ) not equal to a, then

σ(a) = ((a a′) · σ)(a) since a /∈ supp(σ)

= (a a′) · (σ((a a′) · a)) permutation action on functions

= (a a′) · (σ(a′)) by definition of transposition

= σ(a′) since > and ⊥ have empty support.

We have that new is monotone and continuous by virtue of elements of

[[name]]⊥ having these properties. It is strict because the least element of

[[name]]⊥ is the constantly-bottom function.

Having defined the morphism new, we immediately obtain the denota-

tion of the fresh expression:

E [[Γ ` fresh : name]](ρ) def= new.

86 5. An overview

5.1.1 Dynamic allocation monads

Previous work[63] attempted to make use of a traditional dynamic alloca-

tion monad on FM-cppos, but this turned out to have problematic order-

theoretic completeness properties. Here, for the record, we briefly review

the details of this problem.

Write Pfin(A) for the FM-set of all finite subsets of A, with permutation

action as for Definition 4.1.7. Then for each FM-cppo D let us attempt to

construct an FM-cppo T(D) whose underlying set is the quotient of D ×
Pfin(A) by the equivariant equivalence relation

(d,X) ∼ (d′, X ′) def⇔ ∃π ∈ perm(A). supp(d) \X = supp(d′) \X ′ ∧
(∀a ∈ supp(d) \X. π(a) = a) ∧ π(d) = d′

and partially-ordered by

(d,X) v (d′, X ′) def⇔ ∃X ′′ ∈ Pfin(A), e, e′.

(d,X) ∼ (e,X ′′) ∧ (d′, X ′) ∼ (e′, X ′′) ∧ e v e′.

(The permutation action is inherited from the product FM-cppo.) Write

d r X for the equivalence class of (d,X) under ∼. Elements d r X would

correspond to denotations of values d whose computation has involved the

generation of the atoms in X.

Pitts has shown[unpublished note] that whilst∼ is indeed an equivariant

equivalence relation and v is likewise an equivariant partial order, T(D) is

unfortunately not an FM-cppo since it does not possess least upper bounds

of all finitely-supported chains. To see this, take as D the FM-cppo P from

§4.2.4 and let A0 ⊂ A1 ⊂ · · · be a strictly increasing chain of finite subsets

of atoms. Then the following forms a finitely-supported chain in T(D):

A0 rA0 v A1 rA1 v · · · .

The result of Pitts shows that if Ar A′ v A′′ r A′′′ in T(D) then |A ∩ A′| 6
|A′′ ∩ A′′′|. Therefore if A r A′ were to be an upper bound for this chain,

then |A ∩ A′| > |An ∩ An| = |An| must hold for all n. But this contradicts

the finiteness of A ∩A′.
Rather than investigate further along this route to determine a correct

construction of such a monad T we decided to change tack and use the

familiar continuation monad instead. That in itself is arguably far more

interesting, as we will see in this chapter.

5.2. Definition of the denotational semantics 87

5.2 Definition of the denotational semantics

5.2.1 Denotation of types

Recall that for each Mini-FreshML type τ then [[τ]] will be an FM-cppo whose

non-⊥ elements correspond to closed values of type τ . To construct these,

define an LFC-functor F : FM-Cpoop
⊥ × FM-Cpo⊥ −→ FM-Cpo⊥:

F (−,+) def= Fσ1(−,+)⊕ · · · ⊕ FσK (−,+)

where the family of LFC-functors Fτ is defined by induction on the structure

of τ as shown in Figure 5.1. Now we apply Theorem 4.5.2 to deduce the

existence of a minimal invariant solution (i,D) to the recursive domain

equation F (D,D) ∼= D. Thus i is an isomorphism from F (D,D) to D and

the identity on D is fix(φ), where φ is the function in Definition 4.5.1.

We may now define the denotation [[τ]] of a type τ as [[τ]] def= Fτ (D,D). It

follows that the isomorphism i : [[σ1]]⊕ · · · ⊕ [[σK]] ∼= [[δ]] serves, along with

the ink, to mediate between [[δ]] and elements of each [[σk]].

5.2.2 Denotation of expressions and frame stacks

Each of the maps

V[[Γ ` v : τ]] ∈ [[Γ]] ([[τ]]

S[[Γ `s S : τ (]] ∈ [[Γ]] ([[τ]]⊥

E [[Γ ` e : τ]] ∈ [[Γ]] ([[τ]]⊥⊥

sends ⊥ to itself and is otherwise defined as given in Figures 5.2 through

5.6, using the continuous equivariant function if defined as follows:

if a, a′, d, d′
def=

d if a = a′;

d′ otherwise.

The ‘continuation-passing style’ of the definitions is self-evident. For con-

venience, when talking about closed values, frame stacks and expressions

we often abbreviate V[[∅ ` v : τ]](∅) to V[[v]], etc. Note that each canonical

form v has a denotation qua value, V[[Γ ` v : τ]] ∈ [[Γ]] ([[τ]], and also qua

expression, E [[Γ ` v : τ]] ∈ [[Γ]] ([[τ]]⊥⊥. These two denotations are related

by the following lemma.

Lemma 5.2.1. For a canonical form v such that Γ`v : τ , then E [[Γ ` v : τ]] =

return ◦ V[[Γ ` v : τ]].

88 5. Definition of the denotational semantics

Funit(−,+) Fname(−,+) Fδ(−,+)

(D,E) 7→ 1⊥ (D,E) 7→ A⊥ (D,E) 7→ E

(f−, f+) 7→ id1⊥ (f−, f+) 7→ idA⊥ (f−, f+) 7→ idE

F<<name>>τ (−,+)

(D,E) 7→ [A]Fτ (D,E)

(f− ∈ D′ (D, f+ ∈ E (E′) 7→
λd ∈ [A]Fτ (D,E). [a′]Fτ (f−, f+)(d@ a′)

for some/any a′ ∈ A \ supp(d, f−, f+)

Fτ×τ ′(−,+)

(D,E) 7→ Fτ (D,E)⊗ Fτ ′(D,E)

(f− ∈ D′ (D, f+ ∈ E (E′) 7→
λ〈d, d′〉 ∈ Fτ (D,E)⊗Fτ ′(D,E). 〈Fτ (f−, f+)(d), Fτ ′(f−, f+)(d′)〉.

Fτ→τ ′(−,+)

(D,E) 7→ Fτ (E,D) ((Fτ ′(D,E))⊥⊥

(f− ∈ D′ (D, f+ ∈ E (E′) 7→
λf ∈ Fτ (E,D) ((Fτ ′(D,E) (1⊥) (1⊥.

λd ∈ Fτ (E′, D′). λf ′ ∈ Fτ ′(D′, E′) (1⊥.

f(Fτ (f+, f−)(d))(f ′ ◦ Fτ ′(f−, f+)).

Figure 5.1: Actions of functors Fτ : FM-Cpoop
⊥ × FM-Cpo⊥ −→ FM-Cpo⊥.

Proof. By induction on the structure of v.

I Cases (var), (unit), (name) and (fun) are trivial.

I Case (con). The induction hypothesis tells us E [[Γ ` v : τ]] = return ◦
V[[Γ ` v : τ]]. Therefore for ρ ∈ [[Γ]],

E [[Γ ` Ck(v) : δ]](ρ)

= λσ ∈ [[δ]]⊥. E [[Γ ` v : σk]](ρ)(λd ∈ [[σk]]. σ((i ◦ ink)(d)))

= λσ ∈ [[δ]]⊥. return(V[[Γ ` v : σk]](ρ))(λd ∈ [[σk]]. σ((i ◦ ink)(d)))

= λσ ∈ [[δ]]⊥. σ((i ◦ ink)(V[[Γ ` v : σk]](ρ)))

= (return ◦ V[[Γ ` Ck(v) : δ]])(ρ).

I Case (pair). The induction hypothesis tells us E [[Γ ` v : τ]] = return ◦

5.2. Definition of the denotational semantics 89

E [[Γ ` x : τ]](ρ) def= λσ ∈ [[Γ(x)]]⊥. σ(ρ(x)).

E [[Γ ` () : unit]](ρ) def= λσ ∈ [[unit]]⊥. σ(>).

E [[Γ ` a : name]](ρ) def= λσ ∈ [[name]]⊥. σ(a).

E [[Γ ` Ck(e) : δ]](ρ) def= λσ ∈ [[δ]]⊥. E [[Γ ` e : σk]](ρ)(λd ∈ [[σk]]. σ((i ◦ ink)(d))).

E [[Γ ` (e, e′) : τ × τ ′]](ρ) def= λσ ∈ [[τ × τ ′]]⊥.

E [[Γ ` e : τ]](ρ)(λd ∈ [[τ]]. E [[Γ ` e′ : τ ′]](ρ)(λd′ ∈ [[τ ′]]. σ〈d, d′〉)).
E [[Γ ` fresh : name]](ρ) def= new def= λσ ∈ [[name]]⊥. σ(a) (any a ∈ A \ supp(σ)).

E [[Γ ` <<e>>e′ : <<name>>τ]](ρ) def= λσ ∈ [[<<name>>τ]]⊥.

E [[Γ ` e : name]](ρ)(λa ∈ [[name]]. E [[Γ ` e′ : τ]](ρ)(λd ∈ [[τ]]. σ([a]d))).

E [[Γ ` swap e, e′ in e′′ : τ]](ρ) def= λσ ∈ [[τ]]⊥.

E [[Γ ` e : name]](ρ)(λa ∈ [[name]].

E [[Γ ` e′ : name]](ρ)(λa′ ∈ [[name]]. E [[Γ ` e′′ : τ]](ρ)(λd ∈ [[τ]]. σ((a a′) · d)))).
E [[Γ ` fun f(x) = e : τ → τ ′]](ρ) def=

λσ ∈ [[τ → τ ′]]⊥. σ(fix(λd ∈ [[τ → τ ′]]. λd′ ∈ [[τ]].

E [[Γ, f : τ → τ ′, x : τ ` e : τ ′]](ρ[f 7→ d, x 7→ d′]))).

E [[Γ ` e e′ : τ]](ρ) def= λσ ∈ [[τ]]⊥.

E [[Γ ` e : τ → τ ′]](ρ)(λd ∈ [[τ → τ ′]]. E [[Γ ` e′ : τ]](ρ)(λd′ ∈ [[τ]]. (d d′)(σ))).

Figure 5.2: Denotation of expressions: part 1.

V[[Γ ` v : τ]] and E [[Γ ` v′ : τ]] = return ◦ V[[Γ ` v′ : τ]]. So for ρ ∈ [[Γ]],

E [[Γ ` (v, v′) : τ]](ρ)

= λσ ∈ [[τ × τ ′]]⊥.

E [[Γ ` v : τ]](ρ)(λd ∈ [[τ]]. E [[Γ ` v′ : τ ′]](ρ)(λd′ ∈ [[τ ′]]. σ〈d, d′〉))
= λσ ∈ [[τ × τ ′]]⊥.

return(V[[Γ ` v : τ]](ρ))(λd ∈ [[τ]].

return(V[[Γ ` v′ : τ ′]](ρ))(λd′ ∈ [[τ ′]]. σ〈d, d′〉))
= λσ ∈ [[τ × τ ′]]⊥.

return(V[[Γ ` v′ : τ ′]](ρ))(λd′ ∈ [[τ ′]]. σ〈V[[Γ ` v : τ]](ρ), d′〉)
= λσ ∈ [[τ × τ ′]]⊥. σ〈V[[Γ ` v : τ]](ρ),V[[Γ ` v′ : τ ′]](ρ)〉
= return〈V[[Γ ` v : τ]](ρ),V[[Γ ` v′ : τ ′]](ρ)〉
= (return ◦ V[[Γ ` (v, v′) : τ × τ ′]])(ρ).

I Case (abst). As for the pair case: we omit the details. �

Now that we have stated the full definitions of V[[–]], S[[–]] and E [[–]]

we are in a position to discuss the denotations of the other non-standard

90 5. Definition of the denotational semantics

E [[Γ ` let x = e in e′ : τ]](ρ) def= λσ ∈ [[τ]]⊥.

E [[Γ ` e : τ ′]](ρ)(λd′ ∈ [[τ ′]]. E [[Γ, x : τ ′ ` e′ : τ]](ρ[x 7→ d′])(σ)).

E [[Γ ` let (x, x′) = e in e′ : τ]](ρ) def= λσ ∈ [[τ]]⊥.

E [[Γ ` e : τ1 × τ2]](ρ)(λ〈d1, d2〉 ∈ [[τ1 × τ2]].

E [[Γ, x : τ1, x′ : τ2 ` e′ : τ]](ρ[x 7→ d1, x
′ 7→ d2])(σ)).

E [[Γ ` let <<x>>x′ = e in e′ : τ]](ρ) def= λσ ∈ [[τ]]⊥.

E [[Γ ` e : <<name>>τ ′]](ρ)(λ[a]d′ ∈ [[<<name>>τ ′]].

E [[Γ, x : name, x′ : τ ′ ` e′ : τ]](ρ[x 7→ a′, x′ 7→ (a a′) · d′])(σ)

(any a′ ∈ A \ supp(σ, a, d, e, e′, ρ)).

E [[Γ ` if e = e′ then e1 else e2 : τ]](ρ) def=

λσ ∈ [[τ]]⊥. [[Γ ` e : name]](ρ)(λa ∈ [[name]]. [[Γ ` e′ : name]](ρ)

(λa′ ∈ [[name]]. if a, a′, E [[Γ ` e1 : τ]](ρ)(σ), E [[Γ ` e2 : τ]](ρ)(σ))).

E [[Γ ` match e with · · · | Ck(xk) -> ek | · · · : τ]] def=

λσ ∈ [[τ]]⊥. E [[Γ ` e : δ]](ρ)(λd′ ∈ [[δ]].

E [[Γ, xk : σk ` ek : τ]](ρ[xk 7→ dk])(σ))

for the unique k and dk such that d′ = (i ◦ ink)(dk) when d′ 6= ⊥.

Figure 5.3: Denotation of expressions: part 2.

constructs, namely:

• abstraction expressions;

• expressions which deconstruct abstraction values;

• atom-swapping expressions.

We now consider each of these in turn, starting with abstraction expres-

sions. To understand their denotation, we first need to consider the denota-

tion of a canonical form <<a>>v, say of type <<name>>τ . (For simplicity, take

v to be closed.) This is represented simply as the equivalence class [a]V[[v]]

in [A][[τ]]. Then the denotation of a non-canonical abstraction expression

<<e>>e′ such that Γ ` <<e>>e′ : <<name>>τ is given by

E [[Γ ` <<e>>e′ : <<name>>τ]](ρ) def= λσ ∈ [[<<name>>τ]]⊥.

E [[Γ ` e : name]](ρ)(λa ∈ [[name]]. E [[Γ ` e′ : τ]](ρ)(λd ∈ [[τ]]. σ([a]d))).

This somewhat complicated-looking clause provides us with a good chance

to examine the continuation-passing style of the semantics. Intuitively, the

5.2. Definition of the denotational semantics 91

V[[Γ ` x : τ]](ρ) def= ρ(x).

V[[Γ ` () : unit]](ρ) def= >.
V[[Γ ` a : name]](ρ) def= a.

V[[Γ ` Ck(v) : δ]](ρ) def= (i ◦ ink)(V[[Γ ` v : σk]](ρ)).

V[[Γ ` (v, v′) : τ × τ ′]](ρ) def= 〈V[[Γ ` v : τ]](ρ),V[[Γ ` v′ : τ ′]](ρ)〉.
V[[Γ ` <<a>>v : <<name>>τ]](ρ) def= [a](V[[Γ ` v : τ]](ρ)).

V[[Γ ` fun f(x) = e : τ → τ ′]](ρ) def= fix(λf ′ ∈ [[τ → τ ′]].

λx′ ∈ [[τ]]. E [[Γ, f : τ → τ ′, x : τ ` e : τ ′]](ρ[f 7→ f ′, x 7→ x′])).

Figure 5.4: Denotation of canonical forms.

denotation of an abstraction expression acts in such a way as to parallel the

following evaluation procedure.

1. Accept a frame stack S expecting an an abstraction value.

2. Evaluate the expression in binding position to yield an atom a.

3. Evaluate the remaining expression to yield a value v.

4. Continue evaluation, having filled the hole in frame stack S with the

abstraction value <<a>>v.

The sequentiality of this process is encoded in the denotational semantics

by identifying the first computation to be performed and then passing that

a continuation which encodes the next computation to be performed. In the

above definition we are constructing two continuations, which are easily

seen to correspond to stages 3 and 4 of the above evaluation procedure:

• λa ∈ [[name]]. E [[Γ ` e′ : τ]](ρ)(λd ∈ [[τ]]. σ([a]d)); and

• λd ∈ [[τ]]. σ([a]d).

By virtue of their denotations we would expect abstraction values to share

the good properties endowed to members of abstraction FM-cppos. A nice

example is the algorithm used for testing abstraction values for equality

described in §2.2.5. For suppose that we have a closed value <<a>>v as

above together with another such value <<a′>>v′. Let us say that the deno-

tations of v and v′ are d and d′ respectively so that the denotations of the

92 5. Definition of the denotational semantics

S[[Γ `s [] : τ (]](ρ) def= λx ∈ [[τ]]. >.
S[[Γ `s S ◦ Ck([–]) : σk (]](ρ) def= λv ∈ [[σk]].

S[[Γ `s S : δ (]](ρ)((i ◦ ink)(v)).

S[[Γ `s S ◦ ([–], e) : τ (]](ρ) def= λd ∈ [[τ]].

E [[Γ ` e : τ ′]](ρ)(λd′ ∈ [[τ ′]]. S[[Γ `s S : τ × τ ′]](ρ)〈d, d′〉).
S[[Γ `s S ◦ (v, [–]) : τ ′ (]](ρ) def= λd ∈ [[τ ′]].

S[[Γ `s S : τ × τ ′]](ρ)〈V[[Γ ` v : τ]](ρ), d〉.
S[[Γ `s S ◦ <<[–]>>e : name (]](ρ) def= λa ∈ [[name]].

E [[Γ ` e : τ]](ρ)(λd ∈ [[τ]]. S[[Γ `s S : <<name>>τ]](ρ)([a]d)).

S[[Γ `s S ◦ <<v>>[–] : τ (]](ρ) def= λd ∈ [[τ]].

S[[Γ `s S : <<name>>τ]](ρ)([V[[Γ ` v : name]](ρ)]d).

S[[Γ `s S ◦ swap [–], e′ in e′′ : name (]](ρ) def= λa ∈ [[name]].

E [[Γ ` e′ : name]](ρ)(λa′ ∈ [[name]]. E [[Γ ` e′′ : τ]](ρ)

(λd ∈ [[τ]]. S[[Γ `s S : τ (]](ρ)((a a′) · d))).
S[[Γ `s S ◦ swap v, [–] in e′′ : name (]](ρ) def= λa′ ∈ [[name]].

E [[Γ ` e′′ : τ]](ρ)

(λd ∈ [[τ]]. S[[Γ `s S : τ (]](ρ)(((V[[Γ ` v : name]](ρ)) a′) · d)).
S[[Γ `s S ◦ swap v, v′ in [–] : τ (]](ρ) def= λd ∈ [[τ]].

S[[Γ `s S : τ (]](ρ)(((V[[Γ ` v : name]](ρ)) (V[[Γ ` v′ : name]](ρ))) · d).
S[[Γ `s S ◦ [–] e : (τ → τ ′) (]](ρ) def= λd ∈ [[τ → τ ′]].

E [[Γ ` e : τ]](ρ)(λd′ ∈ [[τ]]. (d d′)(S[[Γ `s S : τ ′ (]](ρ))).

S[[Γ `s S ◦ v [–] : τ (]](ρ) def= λd ∈ [[τ]].

((V[[Γ ` v : τ → τ ′]](ρ)) d)(S[[Γ `s S : τ ′ (]](ρ)).

Figure 5.5: Denotation of frame stacks (part 1).

two abstraction values are [a]d and [a′]d′ respectively. Now according to the

properties of the partial order v on abstraction FM-cppos we have that

[a]d = [a′]d′ ⇔ (a a′′) · d = (a′ a′′) · d′

for some/any fresh a ∈ A \ supp(a, a′, d, d′). This exactly parallels the

construction of the equality test2 for such values in the language. There,

we choose a fresh atom a′′ and then just compare the values (a a′′) · v and

(a′ a′′) · v.

2Of course, in Fresh O’Caml we have more general abstraction types than <<name>>τ ,

but the similarity still holds.

5.2. Definition of the denotational semantics 93

S[[Γ `s S ◦ let x = [–] in e : τ (]](ρ) def=

λd ∈ [[τ]]. E [[Γ, x : τ ` e : τ ′]](ρ[x 7→ d])(S[[Γ `s S : τ ′ (]](ρ)).

S[[Γ `s S ◦ let (x, x′) = [–] in e : τ × τ ′ (]](ρ) def= λ〈d1, d2〉 ∈ [[τ × τ ′]].

E [[Γ, x : τ, x′ : τ ′ ` e : τ ′′]](ρ[x 7→ d1, x
′ 7→ d2])(S[[Γ `s S : τ ′′ (]](ρ)).

S[[Γ `s S ◦ let <<x>>x′ = [–] in e : <<name>>τ (]](ρ) def=

λ[a]d ∈ [[<<name>>τ]].

E [[Γ, x : name, x′ : τ ` e : τ ′]](ρ[x 7→ a′, x′ 7→ (a a′) · d])
(S[[Γ `s S : τ ′ (]](ρ)) (a′ ∈ A \ supp(S, a, d, e, ρ)).

S[[Γ `s S ◦ if [–] = e′ then e1 else e2 : τ (]](ρ) def= λa ∈ [[name]].

E [[Γ ` e′ : name]](ρ)(λa′ ∈ [[name]].

if a, a′, E [[Γ ` e1 : τ]](ρ)(S[[Γ `s S : τ (]](ρ)),

E [[Γ ` e2 : τ]](ρ)(S[[Γ `s S : τ (]](ρ)))

S[[Γ `s S ◦ if v = [–] then e1 else e2 : τ (]](ρ) def= λa′ ∈ [[name]].

if V[[Γ ` v : name]](ρ), a′, E [[Γ ` e1 : τ]](ρ)(S[[Γ `s S : τ (]](ρ)),

E [[Γ ` e2 : τ]](ρ)(S[[Γ `s S : τ (]](ρ)).

S[[Γ `s S ◦ match [–] with · · · | Ck(xk) -> ek | · · · : δ (]] def=

λd ∈ [[δ]]. E [[Γ, xk : σk ` ek : τ]](ρ[xk 7→ dk])(S[[Γ `s S : τ (]](ρ))

for the unique k and dk such that d = (i ◦ ink)(dk).

Figure 5.6: Denotation of frame stacks (part 2).

Pattern-matching on abstraction values is provided in Mini-FreshML by

the let <<x>>x′ = e in e′ construct. The denotation of such an expression

is as follows:

E [[Γ ` let <<x>>x′ = e in e′ : τ]](ρ) def= λσ ∈ [[τ]]⊥.

E [[Γ ` e : <<name>>τ ′]](ρ)(λ[a]d′ ∈ [[<<name>>τ ′]].

E [[Γ, x : name, x′ : τ ′ ` e′ : τ]](ρ[x 7→ a′, x′ 7→ (a a′) · d′])(σ)

(any a′ ∈ A \ supp(σ, a, d, e, e′, ρ)).

Again whilst this looks complicated, careful inspection will reveal that the

construction of the function exactly parallels the procedure for deconstruct-

ing abstraction values given in Chapter 2.

Finally, we consider explicit atom-swapping operations. Denotationally,

performing such an operation just comes down to exploiting the permuta-

tion action of the particular FM-cppo in question as follows.

E [[Γ ` swap e, e′ in e′′ : τ]](ρ) def= λσ ∈ [[τ]]⊥.

94 5. Some properties of the semantics

E [[Γ ` e : name]](ρ)(λa ∈ [[name]]. E [[Γ ` e′ : name]](ρ)(λa′ ∈ [[name]].

E [[Γ ` e′′ : τ]](ρ)(λd ∈ [[τ]]. σ((a a′) · d)))).

If only implementing swapping in the actual Fresh O’Caml runtime system

were so straightforward: we will see in §6.6.2 why it is not.

5.3 Some properties of the semantics

5.3.1 Support and equivariance properties

Recall §4.6 where we introduced the notion of FM-sets of syntax. Here we

refine the FM-set Exp of that section to that of an FM-set of terms in context,

denoted by E and defined as follows. The underlying set is

{(Γ, e, τ, ρ) | Γ ` e : τ ∧ ρ ∈ [[Γ]]}

and the permutation action is given by π ·(Γ, e, τ, ρ) def= (Γ, π ·e, τ, π ·ρ). With

respect to this action, each element is indeed finitely supported. The maps

E [[–]] can now be thought of as elements of the dependent product∏
(Γ,e,τ,ρ)∈E

[[τ]]⊥⊥.

Now we can see that each of these elements is indeed equivariant, since the

following lemma tells us that

E [[Γ ` π · e : τ]](π · ρ) = π · E [[Γ ` e : τ]](ρ).

Similar results hold for V[[–]] and S[[–]]. However it must be noted that the

functions denoting values, frame stacks and expressions do not necessarily

have empty support by themselves, since atoms may occur throughout val-

ues and expressions. As a consequence they are not necessarily morphisms

in the category FM-Cpo⊥ (as one might expect in a categorical semantics,

for example). This is easily seen by taking any a ∈ A and considering the

function V[[` a : name]](∅), which has a finite support of just {a}.

Lemma 5.3.1 (Equivariance). For atoms a, a′, values v, frame stacks S and

expressions e then

Γ ` v : τ ⇒ ∀ρ ∈ [[Γ]]. π · (V[[Γ ` v : τ]](ρ)) = V[[Γ ` π · v : τ]](π · ρ);

Γ `s S : τ (⇒ ∀ρ ∈ [[Γ]].

π · (S[[Γ `s S : τ (]](ρ)) = S[[Γ `s π · S : τ (]](π · ρ);

Γ ` e : τ ⇒ ∀ρ ∈ [[Γ]]. π · (E [[Γ ` e : τ]](ρ)) = E [[Γ ` π · e : τ]](π · ρ).

5.4. Computational adequacy 95

Proof. By induction over the axioms and rules defining the typing relations

` and `s. �

Corollary 5.3.2. For values v, frame stacks S, expressions e and atoms a,
Γ ` v : τ ⇒ ∀ρ ∈ [[Γ]]. aB v, ρ⇒ aB V[[Γ ` v : τ]](ρ);

Γ `s S : τ (⇒ ∀ρ ∈ [[Γ]]. aB S, ρ⇒ aB S[[Γ `s S : τ (]](ρ);

Γ ` e : τ ⇒ ∀ρ ∈ [[Γ]]. aB e, ρ⇒ aB E [[Γ ` e : τ]](ρ).

Therefore supp(V[[Γ ` v : τ]](ρ)) ⊆ supp(v)∪supp(ρ); and similarly for frame

stacks S and expressions e.

Proof. The second sentence follows from the first just because a B v holds

iff a /∈ supp(v) (similarly for S and e). For the first part, recall that a B v

holds just when (a a′) · v = v for all a′ ∈ A \ supp(v). We wish to show that

(a a′) · (V[[Γ ` v : τ]](ρ)) = V[[Γ ` v : τ]](ρ), which by the previous Lemma

is equivalent to asking V[[Γ ` (a a′) · v : τ]]((a a′) · ρ) = V[[Γ ` v : τ]](ρ).

However, we already have (a a′) · v = v and (a a′) · ρ = ρ. �

5.3.2 Substitutivity properties

Notation 5.3.3. Write V[[ψ]] for the element of [[Γ]] such that for all x ∈
dom(Γ), V[[ψ]](x) def= V[[ψ(x)]]. �

Lemma 5.3.4 (Substitutivity). For typing contexts Γ, values v, frame stacks

S and expressions e then
Γ ` v : τ ⇒ ∀ψ ∈ SubstΓ. V[[e[ψ]]] = V[[Γ ` v : τ]]V[[ψ]];

Γ `s S : τ ⇒ ∀ψ ∈ SubstΓ. S[[S[ψ]]] = S[[Γ `s S : τ (]]V[[ψ]];

Γ ` e : τ ⇒ ∀ψ ∈ SubstΓ. E [[e[ψ]]] = E [[Γ ` e : τ]]V[[ψ]].

Proof. By induction over the structures of v, S and e. �

5.4 Computational adequacy

In this section we prove a computational adequacy result which provides an

important bridge between the operational and denotational semantics: it

states that expressions with equal denotations are observationally equiva-

lent. The adequacy result is not easy to prove, so at this juncture we simply

state the theorem and then postpone its proof until we have developed some

further theory.

96 5. Computational adequacy

Theorem 5.4.1 (Adequacy). Given a typing context Γ and a typeable expres-

sion e such that Γ ` e : τ , then for all closed frame stacks S of type τ (

and substitutions3 ψ ∈ SubstΓ

E [[Γ ` e : τ]]V[[ψ]]S[[S]] = > ⇔ 〈S, e[ψ]〉↓ .

Thus if e is a closed expression we have that E [[e]]S[[S]] = > ⇔ 〈S, e〉↓. �

As far as proof is concerned, the forwards direction of the theorem is the

difficult case. We adopt the standard technique of using type-indexed logical

relations which relate domain elements to pieces of syntax.

5.4.1 Construction of the logical relations

We construct three families of relations4 in the style of [51]:

Cval
τ ⊆eq [[τ]]×Valτ Cstk

τ ⊆eq [[τ]]⊥× Stackτ Cexp
τ ⊆eq [[τ]]⊥⊥×Expτ

which must satisfy the following properties. Firstly, for each v ∈ Valτ then{
d | d Cval

τ v
}

must contain ⊥ and be closed under least upper bounds of

countable, finitely-supported chains. Furthermore we ask the following:

d Cval
unit () (5.1)

d Cval
name v ⇔ d 6= ⊥ ⇒ d = v (5.2)

d Cval
δ Ck(vk) ⇔ ∃dk ∈ [[σk]].

d = (i ◦ ink)(dk) ∧ dk Cval
σk
vk (5.3)

[a1]d Cval
<<name>>τ <<a2>>v ⇔ (a1 a) · d Cval

τ (a2 a) · v
for any a ∈ A \ supp(a1, a2, d, v)

(5.4)

〈d1, d2〉 Cval
τ×τ ′ (v1, v2) ⇔ d1 Cval

τ v1 ∧ d2 Cval
τ ′ v2 (5.5)

d Cval
τ→τ ′ v ⇔ ∀d′ Cval

τ v′. d(d′) Cexp
τ ′ v v′ (5.6)

The families of auxiliary relations Cstk
τ ⊆eq [[τ]]⊥ × Stackτ (relating domain

elements σ to frame stacks S of argument type τ) and Cexp
τ ⊆eq [[τ]]⊥⊥×Expτ

(relating domain elements ε to expressions e to be evaluated in a frame stack

of argument type τ) are defined in terms of Cval
τ as follows.

σ Cstk
τ S

def⇔ ∀d Cval
τ v. σ(d) = > ⇒ 〈S, v〉↓ (5.7)

3Recall that ψ maps value identifiers to closed values; thus, e[ψ] must be a closed

expression since e is typeable in context Γ.
4Note the use of ⊆eq to indicate an equivariant subset, in the sense of Definition 4.1.6.

5.4. Computational adequacy 97

ε Cexp
τ e

def⇔ ∀σ Cstk
τ S. ε(σ) = > ⇒ 〈S, e〉↓ (5.8)

The meta-notation ∀d Cval
τ v expresses universal quantification over all d ∈

[[τ]] and v ∈ Valτ such that d Cval
τ v. We read ∀σ Cstk

τ S in a similar manner.

The clauses above define the logical relation Cval
τ in terms of a logical

relation Cval
δ that is the fixed point of a certain operator acting on relations

which we define below. However we cannot simply appeal to Tarski’s fixed

point theorem to construct this, as the negative occurrence of Cval
τ in clause

(5.6) means that this operator is not necessarily monotonic5. We thus adapt

the ‘relational structures’ of Pitts[46] in order to proceed.

5.4.2 Relational structures

Definition 5.4.2 (Relational structure). A relational structure R on the

category FM-Cpo⊥ is specified by the following: for each FM-cppo D, an

FM-set R(D) of ‘R-relations on D’ and an equivariant FM-relation ⊂R ⊆
(D (E) × R(D) × R(E). We write f : R ⊂ S iff f ∈ D (E and

(f,R ∈ R(D), S ∈ R(E)) is in⊂R (abbreviating⊂R to⊂when the meaning

is clear). The relations⊂must satisfy: for everyR ∈ R(D) then idD : R ⊂ R

and given a second morphism g ∈ E (E′ with g : S ⊂ T , for T ∈ R(E′),

then g ◦ f : R ⊂ T . When idD : R ⊂ R′ and idD : R′ ⊂ R imply that

R = R′ then the relational structure is said to be normal. �

The particular (normal) relational structure R which we shall use is

defined as follows. For each FM-cppo D, let R(D) consist of all finitely

supported subsets of D × Valτ which contain {⊥} × Valτ . Write (d, v :

τ) for a member of one of these subsets to make the typing annotation

explicit. Since each of these subsets is finitely supported, then R(D) is

indeed an FM-set when equipped with the permutation action π · R def=

{(π · d, π · v : τ) | (d, v : τ) ∈ R} for R ∈ R(D). For a morphism f ∈
D (E, R ∈ R(D) and S ∈ R(E) then say that f : R ⊂ S holds iff

(d, v : τ) ∈ R ⇒ (f(d), v : τ) ∈ S. The relation ⊂ has the following

important properties.

. Equivariance. It is easy to see that ⊂ is supported by the empty set, the

permutation action being given by that in Definition 4.1.9.

5See [45, 47] for further discussion of such problems.

98 5. Computational adequacy

Funit(R−, R+) def= {(d, () : unit) | d ∈ 1⊥}
Fname(R−, R+) def= {(⊥, a : name) | a ∈ A}∪

{(a, a : name) | a ∈ A}
Fδ(R−, R+) def= R+

F<<name>>τ (R−, R+) def= {([a]d, <<a′>>v : <<name>>τ) |
∃a′′ ∈ A \ supp(R−, R+, a, a′, d, v).

((a a′′) · d, (a′ a′′) · v : τ) ∈ Fτ (R−, R+)}
Fτ×τ ′(R−, R+) def= {(〈d, d′〉, (v, v′) : τ × τ ′) |

(d, v : τ) ∈ Fτ (R−, R+) ∧
(d′, v′ : τ ′) ∈ Fτ ′(R−, R+)}

Fτ→τ ′(R−, R+) def= {(d ∈ F und
τ (R+, R−) ((F und

τ ′ (R−, R+))⊥⊥,

fun f(x) = e : τ → τ ′) |
∀(d′, v′) ∈ Fτ (R+, R−),

σ ∈ F und
τ ′ (R−, R+) (1⊥, S : τ ′ (.

(∀(d′′, v′′) ∈ Fτ ′(R−, R+).

σ(d′′) = > ⇒ 〈S, v′′〉↓) ⇒
(d(d′)(σ) = > ⇒ 〈S, (fun f(x) = e) v′〉↓)}.

F (R−, R+) def= {(ink(dk), Ck(vk) : δ) |
1 6 k 6 K ∧ (dk, vk : σk) ∈ Fσk

(R−, R+)}.

Figure 5.7: Actions on R-relations for F and the Fτ .

. Inverse images. For all f ∈ D (E and each S ∈ R(E) there exists a

unique f∗S def= {(d, v : τ) | (f(d), v : τ) ∈ S} such that for all g ∈ D (D

and R ∈ R(D), g : R ⊂ f∗S ⇔ f ◦ g : R ⊂ S.

. Intersections. Given any finitely-supported subset of relations S ⊆ R(E)

there exists a unique relation
⋂
S ∈ R(E) (given by set-theoretic intersec-

tion of the relations in S) such that for each g : R ⊂
⋂
S then g : R ⊂ S

for each S ∈ S.

Lemma 5.4.3. If i ∈ E (D is an isomorphism then for R ∈ R(D) and

S ∈ R(E), idE : S ⊂ i∗R⇔ idD : (i−1)∗S ⊂ R.

Proof. We give the forwards direction, for the reverse is similar. As assump-

5.4. Computational adequacy 99

tions we have that (d, v : τ) ∈ S ⇒ (i(d), v : τ) ∈ R and that (d, v : τ) ∈
(i−1)∗S. It follows from the second of these that (i−1(d), v : τ) ∈ S by

definition of the inverse image operator (–)∗. However the first assumption

then tells us that ((i ◦ i−1)(d), v : τ) ∈ R; we conclude since i is iso. �

Definition 5.4.4 (Admissible relations). Call a relation R ∈ R(D) admis-

sible iff for each closed canonical form v of type τ , the subset of D given by

{d ∈ D | (d, v : τ) ∈ R} contains ⊥ and is closed under least upper bounds

of countable, finitely-supported chains in D. �

Lemma 5.4.5. The FM-set of admissible relations R ∈ R(D), with permuta-

tion action inherited from R(D), forms an FM-complete lattice with greatest

lower bounds being given by intersections.

Proof. Follows from the Intersections property above. �

In §5.2.1 we built up FM-cppos [[τ]] using mixed-variance LFC-functors

{F, Fτ} : FM-Cpoop
⊥ × FM-Cpo⊥ −→ FM-Cpo⊥. We are now going to equip

each such functor with an equivariant action on R-relations as shown in

Figure 5.7. In that Figure, we use the notation F und
τ (R−, R+) to stand for

the FM-cppo Fτ (D−, D+), where D− and D+ are the ‘underlying’ FM-cppos

such that R− ∈ R(D−) and R+ ∈ R(D+). The equivariant actions are maps

on relations which are order-reversing in their first argument and order-

preserving in their second argument, written as R−, R+ 7→ F (R−, R+).

They build new relations out of old in a way analogous to the way that

the functors F and the Fτ construct the FM-cppos used to denote types.

We require the actions to satisfy the following properties which we are now

going to prove. For f− : R−2 ⊂ R−1 and f+ : R+
1 ⊂ R+

2 then

• if R+ is admissible then F (R−, R+) must be also;

• F (f−, f+) : F (R−1 , R
+
1) ⊂ F (R−2 , R

+
2);

and ditto for the Fτ . To proceed, we need the following technical lemma

which establishes a now-familiar ‘some/any’ property.

Lemma 5.4.6. If ([a]d, <<a′>>v : <<name>>τ) ∈ F<<name>>τ (R−, R+) then for

all a′′ ∈ A\ supp(R−, R+, a, a′, d, v), ((a a′′) ·d, (a′ a′′) ·v : τ) ∈ Fτ (R−, R+).

Proof. Given ([a]d, <<a′>>v : <<name>>τ) ∈ F<<name>>τ (R−, R+) then there

exists some a′′ ∈ A \ supp(R−, R+, a, a′, d, v) such that ((a a′′) · d, (a′ a′′) · v :

100 5. Computational adequacy

τ) ∈ Fτ (R−, R+). Given any other a′′′ ∈ A \ supp(R−, R+, a, a′, d, v), then

((a′′ a′′′) · (a a′′) · d, (a′′ a′′′) · (a′ a′′) · v : τ) ∈ (a′′ a′′′) · Fτ (R−, R+). Since

a′′, a′′′ /∈ supp(R−, R+) then this and the equivariance of the Fτ implies

((a′′ a′′′) · (a a′′) · d, (a′′ a′′′) · (a′ a′′) · v : τ) ∈ Fτ (R−, R+). Therefore

((a a′′′) · d, (a′ a′′′) · v : τ) ∈ Fτ (R−, R+) as required. �

Lemma 5.4.7 (Actions on relations preserve admissibility). For each type

τ and R-relations R−, R+ ∈ R(D) then if R+ is admissible, Fτ (R−, R+) ∈
R(Fτ (D,D)) is also (and respectively for the functor F).

Proof. The case for the functor F is trivial by virtue of the continuity of the

injection functions ink into the smash sum. For the other cases, we proceed

by induction on the structure of τ . All of these except the following two are

straightforward and we omit them.

I Case (abst). We need to show that when R+ and Fτ (R−, R+) satisfy

the admissibility property then so does F<<name>>τ (R−, R+), i.e. that the FM-

set { [a]d | ([a]d, <<a′>>v′ : <<name>>τ) ∈ F<<name>>τ (R−, R+)} partially or-

dered as for F<<name>>τ (D,D) contains [a]⊥ (for any a ∈ A) and has least up-

per bounds of finitely-supported chains ([an]dn | n < ω) ∈ F<<name>>τ (D,D)

for some fixed <<a′>>v′. It is easy to see that it contains the aforemen-

tioned least element. Moreover, Lemma 4.2.32 tells us that for any a /∈
supp ([an]dn | n < ω) such a finitely-supported chain has a least upper bound

[a]
⊔

n<ω(([an]dn)@a), which is equal to [a]
⊔

n<ω(a an)·dn; we can calculate

that this lies in the FM-set {d | (d, v : τ) ∈ Fτ (R−, R+)} by virtue of the

induction hypothesis.

I Case (fn). This case is straightforward, save for the crucial observation

that for a chain ((dn, fun f(x) = e : τ → τ ′) | n < ω) ∈ Fτ→τ ′(R−, R+)

and d′, σ as in Figure 5.7, (
⊔

n<ω dn)(d′)(σ) =
⊔

n<ω(dn(d′)(σ)) = > implies

there exists some n such that dn(d′)(σ) = >. �

Lemma 5.4.8 (Actions on relations preserve ⊂). For each Mini-FreshML

type τ , R-relations R−1 ∈ R(D−
1), R−2 ∈ R(D−

2), R+
1 ∈ R(D+

1), R+
2 ∈ R(D+

2)

and elements f− ∈ D−
2 (D−

1 , f+ ∈ D+
1 (D+

2 such that f− : R−2 ⊂ R−1

and f+ : R+
1 ⊂ R+

2 then

(d, v : τ) ∈ Fτ (R−1 , R
+
1) ⇒ (Fτ (f−, f+)(d), v : τ) ∈ Fτ (R−2 , R

+
2)

and similarly for the functor F .

5.4. Computational adequacy 101

Proof. For the first part we proceed by induction on the structure of τ . When

considering elements (d, v : τ) of each Fτ (R−1 , R
+
1) in turn, we omit the d =

⊥ cases since these go through immediately (by virtue of the admissibility

of Fτ (R−2 , R
+
2)).

I Cases (unit)–(data) are straightforward, by virtue of Funit, Fname and Fδ

being constant functors.

I Case (abst). Take ([a]d, <<a′>>v : <<name>>τ) ∈ F<<name>>τ (R−1 , R
+
1).

For any a′′ ∈ A \ supp(R−1 , R
+
1 , R

−
2 , R

+
2 , a, d, a

′, v′), Lemma 5.4.6 tells us

that ((a a′′) · d, (a′ a′′) · v : τ) ∈ Fτ (R−1 , R
+
1). The induction hypothesis

then implies that (Fτ (f−, f+)((a a′′) · d), (a′ a′′) · v : τ) ∈ Fτ (R−2 , R
+
2)

and moreover by equivariance of Fτ , ((a a′′) · Fτ (f−, f+)(d), (a′ a′′) · v :

τ) ∈ Fτ (R−2 , R
+
2). Since Fτ (f−, f+) has empty support then this implies

that ([a](Fτ (f−, f+)(d)), <<a′>>v : τ) ∈ F<<name>>τ (R−2 , R
+
2) and therefore,

(F<<name>>τ (f−, f+)([a]d), <<a′>>v : τ) ∈ F<<name>>τ (R−2 , R
+
2).

I Case (pair). Consider an element (d, v : τ × τ ′) of Fτ×τ ′(R−1 , R
+
1). By

the induction hypothesis we have that for all (d1, v1 : τ) ∈ Fτ (R−1 , R
+
1) and

(d2, v2 : τ ′) ∈ Fτ ′(R−1 , R
+
1) then

(Fτ (f−, f+)(d1), v1 : τ) ∈ Fτ (R−2 , R
+
2) and (5.9)

(Fτ ′(f−, f+)(d2), v2 : τ ′) ∈ Fτ ′(R−2 , R
+
2). (5.10)

Writing d as 〈d′1, d′2〉, v as (v1, v2) and observing the action of the functor

Fτ1×τ2 in Figure 5.7 we see that (d′1, v1 : τ) ∈ Fτ (R−, R+) and (d′2, v2 :

τ ′) ∈ Fτ ′(R−, R+); thus, we can apply (5.9) and (5.10) to deduce that

(Fτ (f−, f+)(d′1), v1) ∈ Fτ (R−2 , R
+
2) ∧ (Fτ ′(f−, f+)(d′2), v2) ∈ Fτ ′(R−2 , R

+
2).

We then conclude by observing the action of Fτ×τ ′ given in Figure 5.7.

I Case (fn). Consider an element (d, fun f(x) = e) of Fτ→τ ′(R−1 , R
+
1).

Thus we have that for all (dτ
1 , v

τ
1) ∈ Fτ (R+

1 , R
−
1), σ ∈ Fτ ′(D−

1 , D
+
1) (1⊥

and S : τ ′ (

(∀(dτ ′
1 , v

τ ′
1) ∈ Fτ ′(R−1 , R

+
1). σ(dτ ′

1) = > ⇒ 〈S, vτ ′
1 〉↓) ⇒

(d(dτ
1)(σ) = > ⇒ 〈S, (fun f(x) = e) v′〉↓)}. (5.11)

The actions of the Fτ and Fτ ′ provide maps Fτ (f+, f−) ∈ Fτ (D+
2 , D

−
2) (

Fτ (D+
1 , D

−
1) and Fτ ′(f−, f+) ∈ Fτ ′(D−

1 , D
+
1) (Fτ ′(D−

2 , D
+
2). Thus by the

induction hypothesis we have that

(dτ
2 , v

τ
2 : τ) ∈ Fτ (R+

2 , R
−
2) ⇒

(Fτ (f+, f−)(dτ
2), v

τ
2 : τ) ∈ Fτ (R+

1 , R
−
1), (5.12)

102 5. Computational adequacy

(dτ ′
1 , v

τ ′
1 : τ ′) ∈ Fτ ′(R−1 , R

+
1) ⇒

(Fτ ′(f−, f+)(dτ ′
1), vτ ′

1 : τ ′) ∈ Fτ ′(R−2 , R
+
2). (5.13)

We need for all such (dτ
2 , v

τ
2), σ′ ∈ Fτ ′(D−

2 , D
+
2) (1⊥ and S : τ ′ (,

Fτ→τ ′(f−, f+)(d)(dτ
2)(σ

′) = > ⇒ 〈S, (fun f(x) = e) vτ
2 〉↓ (5.14)

under the assumption that:

∀(dτ ′
2 , v

τ ′
2) ∈ Fτ ′(R−2 , R

+
2). σ′(dτ ′

2) = > ⇒ 〈S, vτ ′
2 〉↓ . (5.15)

We can unpack the functorial action6 in (5.14) to see that we must prove

d(Fτ (f+, f−)(dτ
2))(σ

′ ◦ Fτ ′(f−, f+)) = > ⇒
〈S, (fun f(x) = e) vτ

2 〉↓ . (5.16)

Given any (dτ ′
1 , v

τ ′
1) ∈ Fτ ′(R−1 , R

+
1) then we can combine (5.13) with (5.15)

to deduce (σ′ ◦ Fτ ′(f−, f+))(dτ ′
1) = > ⇒ 〈S, vτ ′

1 〉↓. We do a sanity check

that σ′ ◦ Fτ ′(f−, f+) does indeed map from Fτ ′(D+
1 , D

−
1) to 1⊥. Then from

(5.11) we have that for all (dτ
1 , v

τ
1) ∈ Fτ (R+

1 , R
−
1),

d(dτ
1)(σ

′ ◦ Fτ ′(f−, f+)) = > ⇒ 〈S, (fun f(x) = e) vτ
1 〉↓ . (5.17)

Now, (5.12) tells us that (Fτ (f+, f−)(dτ
2), v

τ
2) lies in Fτ (R+

1 , R
−
1). Using this

pair as the (dτ
1 , v

τ
1) in (5.17) then yields (5.16) as required.

Considering now the functor F , take an element (d, Ck(vk) : δ) ∈
F (R−1 , R

+
1) such that 1 6 k 6 K. We may write any such d as ink(dk).

Then we have that (dk, vk : σk) ∈ Fσk
(R−1 , R

+
1). We need to show that

(F (f−, f+)(ink(dk)), Ck(vk) : δ) ∈ F (R−2 , R
+
2). Using the earlier parts of

this lemma and the assumption (dk, vk : σk) ∈ Fσk
(R−1 , R

+
1) we now deduce

(Fσk
(f−, f+)(dk), vk : σk) ∈ Fσk

(R−2 , R
+
2)

Thus (ink(Fσk
(f−, f+)(dk)), Ck(vk) : δ) lies in Fδ(R−2 , R

+
2). But by the action

of the functor F this is just (F (f−, f+)(ink(dk)), Ck(vk) : δ). �

What we are ultimately interested in showing is that a certain invariant

relation exists as stated in the following Lemma, whose proof we defer for

just a moment.

6See Figure 5.1 for the definition.

5.4. Computational adequacy 103

Lemma 5.4.9 (Existence of invariant relations). There exists an invariant

relation ∆ satisfying the following properties:

i : F (∆,∆) ⊂ ∆ and i−1 : ∆ ⊂ F (∆,∆),

where i is the isomorphism part of the minimal invariant solution to the

recursive equation on FM-cppos given in §5.2.1. �

As we shall see, the very fact that the solution to the recursive equation

on FM-cppos satisfies the minimal invariant property is crucial to deducing

the existence of ∆. Now it turns out that the relation ∆ is in fact the crux of

the matter, because we will define

Cval
τ

def= Fτ (∆,∆)

for each type τ and the game is over. Let us now give the proof.

Proof. Observe that

i−1 : ∆ ⊂ F (∆,∆)

⇔ i−1 ◦ idD : ∆ ⊂ F (∆,∆)

⇔ idD : ∆ ⊂ (i−1)∗F (∆,∆) by inverse images

⇔ ∆ ⊆ (i−1)∗F (∆,∆) by definition of – ⊂ –

and moreover

i : F (∆,∆) ⊂ ∆

⇔ i ◦ idF (D,D) : F (∆,∆) ⊂ ∆

⇔ idF (D,D) : F (∆,∆) ⊂ i∗∆ by inverse images

⇔ idD : (i−1)∗F (∆,∆) ⊂ ∆ by Lemma 5.4.3

⇔ (i−1)∗F (∆,∆) ⊆ ∆ by definition of – ⊂ –.

Thus in order to deduce the existence of the invariant relation ∆ it suf-

fices to obtain a fixed point solution to the equation ∆ = Φ(∆), where

Φ(R) def= (i−1)∗F (R,R). We can see that Φ is an equivariant operator on

the FM-complete lattice L of admissible relations R ∈ R(D). But whilst

Φ is equivariant, it is not necessarily monotonic due to the possible mixed-

variance of F . Thus, we define a second operator

Ψ(R−, R+) def= (i−1)∗F (R−, R+)

104 5. Computational adequacy

which we claim is a monotone, equivariant function from the FM-complete

lattice Lop × L to L. Let us check its monotonicity, for the equivariance

is easy to see. Given admissible relations R−1 , R
−
2 , R

+
1 , R

+
2 in L such that

idD : R−2 ⊂ R−1 and idD : R+
1 ⊂ R+

2 , then we have that

F (idD, idD) : F (R−1 , R
+
1) ⊂ F (R−2 , R

+
2)

by virtue of the admissible actions of the functor F . Since F (idD, idD) =

idF (D,D) then this yields that F (R−1 , R
+
1) ⊆ F (R−2 , R

+
2); the monotonicity of

Ψ then arises since the inverse image operator (i−1)∗ is monotone. It follows

that the operator

Ψ′(R−, R+) def= (Ψ(R+, R−),Ψ(R−, R+))

is a monotone, equivariant function from the FM-complete lattice Lop×L to

itself. This now ‘type-checks’ correctly in order that we can appeal to Tarski

(Lemma 4.3.4) to obtain the least fixed point of Ψ′. Let us denote this by

(∆−,∆+). Since Ψ′ is an equivariant function then we can apply Lemma 4.5

to deduce that ∆− and ∆+ possess empty support. Observe further that if

we can prove that ∆− = ∆+ = ∆ then

(∆,∆) = Ψ′(∆,∆) = (Ψ(∆,∆),Ψ(∆,∆)) = (Φ(∆),Φ(∆))

and thus ∆ = Φ(∆) as we desire. Given that (∆−,∆+) is a fixed point of

Ψ′, we calculate that

∆− = Ψ(∆+,∆−) and ∆+ = Ψ(∆−,∆+); (5.18)

moreover, since it is the least fixed point we also have that for any admissible

relations (R−, R+) ∈ Lop × L,

(idD : R− ⊂ Ψ(R+, R−) ∧ idD : Ψ(R−, R+) ⊂ R+) ⇒
idD : R− ⊂ ∆− ∧ idD : ∆+ ⊂ R+. (5.19)

To prove that ∆− = ∆+ then we just need to show that idD : ∆+ ⊂ ∆−

and idD : ∆− ⊂ ∆+. We have the first of these straight away, for setting

R− = ∆+ and R+ = ∆− in (5.19) yields

(idD : ∆+ ⊂ Ψ(∆−,∆+) ∧ idD : Ψ(∆+,∆−) ⊂ ∆−) ⇒
idD : ∆+ ⊂ ∆−,

the left-hand side of which holds by virtue of (5.18).

5.4. Computational adequacy 105

The reverse inclusion (idD : ∆− ⊂ ∆+) is the more interesting case as

its proof is critically dependent on the minimal invariance property of the

FM-cppo D, namely that the identity on D is the least fixed point of the

function φ(f) def= i ◦ F (f, f) ◦ i−1. For consider the FM-cppo of functions

S
def=

{
f ∈ D (D | f : ∆− ⊂ ∆+

}
,

which contains the least element inD (D (by admissibility of ∆+) and has

least upper bounds for all finitely supported chains. Observe that it suffices

to prove that f ∈ S ⇒ φ(f) ∈ S, for then we can appeal to Scott induction

to get idD = fix(φ) ∈ S which yields idD : ∆− ⊂ ∆+ as desired. Now

given such an f we can calculate that F (f, f) : F (∆+,∆−) ⊂ F (∆−,∆+).

Secondly, by virtue of inverse images and Lemma 5.4.3 once again it is easy

to see that the equations (5.18) imply i−1 : ∆− ⊂ F (∆+,∆−) and i :

F (∆−,∆+) ⊂ ∆+. Thus by transitivity of – ⊂ –, i◦F (f, f)◦ i−1 : ∆− ⊂ ∆+,

showing that φ(f) does indeed lie in S. Therefore ∆− = ∆+ = ∆, meaning

(as we observed earlier) that i : F (∆,∆) ⊂ ∆ and i−1 : ∆ ⊂ F (∆,∆). �

Since Cstk
τ and Cexp

τ are defined in terms of Cval
τ , then the following

theorem suffices (at last!) to establish the existence of the logical relations.

Theorem 5.4.10 (Existence of each Cval
τ relation). Each logical relation for

values may be constructed as Cval
τ

def= Fτ (∆,∆).

Proof. Since ∆ ∈ R(D), then Fτ (∆,∆) lies in R(Fτ (D,D)), which is in turn

equal to R[[τ]]. Thus, Cval
τ ⊆ Fτ (∆,∆) ⊆ [[τ]] × Valτ . Moreover, since ∆ and

Fτ both have empty support then we indeed have that Cval
τ ⊆eq [[τ]]×Valτ . By

virtue of the admissibility properties of ∆, then for some typeable canonical

form v of type τ we have that {d | d Cval
τ v} contains ⊥ and is closed under

least upper bounds of finitely-supported chains. Properties (5.1), (5.2),

(5.4), (5.5) and (5.6) follow immediately from the definitions of Funit,

Fname, F<<name>>τ , Fτ1×τ2 and Fτ1→τ2 respectively, together with Lemma 5.4.6.

Property (5.3) follows by first observing that Cval
δ = Fδ(∆,∆) = ∆; then, if

(d, v) ∈ ∆ we have (i−1(d), v) ∈ F (∆,∆) (since i−1 : ∆ ⊂ F (∆,∆)).

Therefore v is of the form Ck(vk) and there exists dk with i−1(d) = ink(dk).

It follows that d = (i ◦ ink)(dk) and (dk, vk) ∈ Fσk
(∆,∆) as required. �

106 5. Computational adequacy

5.4.3 Properties of the logical relations

Theorem 5.4.11 (Fundamental theorem of the logical relations). For

typing contexts Γ, values v, frame stacks S and expressions e then
Γ ` v : τ ⇒ ∀ρ CΓ ψ. V[[Γ ` v : τ]](ρ) Cval

τ v[ψ];

Γ `s S : τ (τ ′ ⇒ ∀ρ CΓ ψ. S[[Γ `s S : τ (τ ′]](ρ) Cstk
τ S[ψ];

Γ ` e : τ ⇒ ∀ρ CΓ ψ. E [[Γ ` e : τ]](ρ) Cexp
τ e[ψ]

where ρ CΓ ψ holds iff the domains of Γ, ρ and ψ are equal, ` ψ : Γ and

for each x ∈ dom(ρ), ρ(x) Cval
Γ(x) ψ[x]. We write ∀ρ CΓ ψ to indicate universal

quantification over all such (ρ ∈ [[Γ]], ψ ∈ SubstΓ)-pairs for some particular Γ.

Proof. It is straightforward to see that the theorem holds when ρ = ⊥. In the

other cases, we proceed by induction over the axioms and rules defining `s

and `. There are many cases to consider, the vast majority of which follow

the same pattern. We now provide a good selection of them.

The first part of the proof concerns the cases for values.

I Case (val-vid). Follows by virtue of the assumption that ρ CΓ ψ.

I Cases (val-unit) and (val-atom) follow immediately from properties (5.1)

and (5.2) respectively.

I Case (val-con). Given a judgement Γ`Ck(vk) : δ, which must have been

derived by knowing Γ` vk : σk, we require (i ◦ ink)(V[[Γ ` vk : σk]](ρ)) Cval
δ

(Ck(vk))[ψ]. That is to say, ∃dk ∈ [[σk]]. (i ◦ ink)(V[[Γ ` vk : σk]](ρ)) = (i ◦
ink)(dk) ∧ dk Cval

σk
vk[ψ] and we can see immediately that this follows from

the induction hypothesis.

I Case (val-pair). Straightforward to deduce from the induction hypothesis

and the property (5.5) of Cval
τ×τ ′ .

I Case (val-abst). Given a valid typing judgement Γ`<<a>>v : <<name>>τ ,

which must have been derived by knowing Γ ` a : name and Γ ` v : τ , then

the induction hypothesis tells us that V[[Γ ` v : τ]](ρ) Cval
τ v[ψ]. Thus by the

equivariance of Cval
τ we obtain that for any a′ /∈ supp(V[[Γ ` v : τ]](ρ), v[ψ]),

(a a′) · V[[Γ ` v : τ]](ρ) Cval
τ (a a′) · (v[ψ]).

By property (5.4) we thus obtain [a]V[[Γ ` v : τ]](ρ) Cval
<<name>>τ <<a>>(v[ψ]).

It follows that V[[Γ ` <<a>>v : <<name>>τ]] Cval
<<name>>τ (<<a>>v)[ψ] as re-

quired.

5.4. Computational adequacy 107

I Case (val-fn). Under the assumption that Γ ` fun f(x) = e : τ → τ ′,

which must have been derived by knowing Γ, f : τ → τ ′, x : τ ` e : τ ′, it is

necessary to show that

V[[Γ ` fun f(x) = e : τ → τ ′]](ρ) Cval
τ→τ ′ (fun f(x) = e)[ψ].

By property (5.6) it therefore suffices to show that Φ(fix(g)) holds, where

Φ(F) def⇔ ∀d Cval
τ v. F (d) Cexp

τ ′ (fun f(x) = e[ψ])(v)

and g
def= λf ′ ∈ [[τ → τ ′]]. λx′ ∈ [[τ]].

E [[Γ, f 7→ τ → τ ′, x 7→ τ ` e : τ ′]](ρ[f 7→ f ′, x 7→ x′]).
Since Φ(F) holds just in case F Cval

τ→τ ′ fun f(x) = e[ψ], then {F | Φ(F)}
is an admissible subset of [[τ → τ ′]] (by virtue of the admissibility property

of Cval
τ→τ ′). Thus by Scott induction we can conclude Φ(fix(g)) by proving

that for any F ∈ [[τ → τ ′]], Φ(F) ⇒ Φ(g(F)). Write Γ′ for Γ, f 7→ τ →
τ ′, x 7→ τ and take any d Cval

τ v. By assumption we have that F Cval
τ→τ ′

fun f(x) = e[ψ], so ρ[f 7→ F, x 7→ d] CΓ′ ψ[fun f(x) = e[ψ]/f, v/x].

Since the induction hypothesis of the fundamental theorem tells us that for

all σ′ Cstk
τ ′ S′ and ρ′ CΓ′ ψ

′, E [[Γ′ ` e : τ ′]](ρ′)(σ′) = > ⇒ 〈S′, e[ψ′]〉↓, then

we know that for all σ′ Cstk
τ ′ S′, E [[Γ′ ` e : τ ′]](ρ[f 7→ F, x 7→ d])(σ′) = > ⇒

〈S′, e[ψ, fun f(x) = e[ψ]/f, v/x]〉↓. But combining this with the definition

of the termination relation implies that Φ(g(F)) holds.

The next part of the proof concerns the cases for frame stacks.

I Case (stk-abst-left). Given a valid typing judgement Γ `s S ◦ <<[–]>>e :

name (, which must have been derived from Γ `s S : <<name>>τ (

and Γ ` e : τ , then we have for ρ CΓ ψ that

S[[Γ `s S : <<name>>τ (]](ρ) Cstk
<<name>>τ S[ψ]; and (5.20)

E [[Γ ` e : τ]](ρ) Cexp
τ e[ψ] (5.21)

by the induction hypotheses. We can calculate that we must prove 〈S[ψ] ◦
<<[–]>>e[ψ], a〉↓, and therefore it suffices to show

〈S[ψ] ◦ <<a>>[–], e[ψ]〉↓ (5.22)

under the assumption that

S[[Γ `s S ◦ <<[–]>>e : name (]](ρ)(a) = > (5.23)

108 5. Computational adequacy

for any a ∈ A. Expanding (5.20)–(5.23) and making use of the definition

of the termination relation we obtain that for any [a′]d′ Cval
<<name>>τ <<a′′>>v′

and any σ′ Cstk
τ S′,

S[[Γ `s S : <<name>>τ (]](ρ)([a′]d′) = > ⇒
〈S[ψ] ◦ <<a′′>>[–], v′〉↓; (5.24)

E [[Γ ` e : τ]](ρ)(σ′) = > ⇒ 〈S′, e[ψ]〉↓; (5.25)

E [[Γ ` e : τ]](ρ)

(λd ∈ [[τ]]. S[[Γ `s S : <<name>>τ (]](ρ)([a]d)) = >. (5.26)

Now, observe that it is sufficient to set

σ′ = λd ∈ [[τ]]. S[[Γ `s S : <<name>>τ (]](ρ)([a]d)

and S′ = S[ψ] ◦ <<a>>[–]. For then, we can combine (5.25) and (5.26)

to conclude (5.22) so long as σ′ Cstk
τ S′. To see this, recall that given any

d Cval
τ v and any a′ ∈ A then (a a′) ·d Cval

τ (a a′) ·v. Therefore [a]d Cval
<<name>>τ

<<a>>v which enables us to conclude by using (5.24).

I Case (stk-abst-right). Given a valid typing judgement Γ `s S ◦ <<a>>[–] :

τ (, which must have been derived by knowing Γ`s S : <<name>>τ and

Γ `s S ◦ <<a>>[–] : τ (, consider some ρ CΓ ψ. Then we have by the

induction hypothesis and the remaining assumption that for [a′]d′ Cval
<<name>>τ

<<a′′>>v′ and d′′ Cval
τ v′′,

S[[Γ `s S : <<name>>τ]](ρ)([a′]d′) = > ⇒ 〈S[ψ], <<a′′>>v′〉↓; (5.27)

S[[Γ `s S ◦ <<a>>[–] : τ (]](ρ)(d′′) = >. (5.28)

We need to show that 〈S[ψ] ◦ <<a>>[–], v′′〉↓ and so it suffices to prove:

〈S[ψ], <<a>>v′′〉↓ . (5.29)

Now, by definition of S[[–]] then (5.28) is equivalent to

S[[Γ `s S : <<name>>τ]](ρ)([a]d′′) = >. (5.30)

Since d′′ Cval
τ v′′ then [a]d′′ Cval

<<name>>τ <<a>>v′′ (by a similar argument to

that in the previous case). Thus we have (5.29) by virtue of (5.27).

I Case (stk-swap-1). Given a judgement Γ `s S ◦ swap [–], e′ in e′′ :

name (, which must have been derived by knowing that Γ`s S : τ (,

Γ ` e′ : name and Γ ` e′′ : τ , consider some ρ CΓ ψ. Then we have by the

induction hypothesis that

∀d Cval
τ v, S[[Γ `s S : τ (]](ρ)(d) = > ⇒ 〈S[ψ], v〉↓; (5.31)

5.4. Computational adequacy 109

∀σ′ Cstk
name S

′, E [[Γ ` e′ : name]](ρ)(σ′) = > ⇒ 〈S′, e′[ψ]〉↓; (5.32)

∀σ′′ Cstk
τ S′′, E [[Γ ` e′′ : τ]](ρ)(σ′′) = > ⇒ 〈S′′, e′′[ψ]〉↓ . (5.33)

By assumption we also have

S[[Γ `s S ◦ swap [–], e′ in e′′ : name (]](ρ)(a) = > (5.34)

and we wish to show that 〈(S ◦ swap [–], e′ in e′′)[ψ], a〉 ↓. It therefore

suffices to prove

〈S[ψ] ◦ swap a, [–] in e′′[ψ], e′[ψ]〉↓ (5.35)

by virtue of the definition of the termination relation. Expanding (5.34) we

have that

E [[Γ ` e′ : name]](ρ)(σ′) = > (5.36)

where

σ′
def= λa′ ∈ [[name]].

E [[Γ ` e′′ : τ]](ρ)(λd ∈ [[τ]]. S[[Γ `s S : τ (]](ρ)((a a′) · d)).

We now see that proving

σ′ Cstk
name S[ψ] ◦ swap a, [–] in e′′[ψ] (5.37)

will allow us to conclude (5.35) by virtue of (5.32). So we take any d Cval
name v

and prove that σ′(d) = > implies 〈S[ψ]◦swap a, [–] in e′′[ψ], v〉↓. If d = ⊥
then this is trivial. Otherwise, write a′ for d (which must equal v by property

(5.2)) and assume that

E [[Γ ` e′′ : τ]](ρ)(λd ∈ [[τ]]. S[[Γ `s S : τ (]](ρ)((a a′) · d)) = >.

We need to show that 〈S[ψ] ◦ swap a, [–] in e′′[ψ], a′〉↓ holds and thus it

suffices to prove that

〈S[ψ] ◦ swap a, a′ in [–], e′′[ψ]〉↓ . (5.38)

Now, observe that this holds from (5.33) if

λd ∈ [[τ]]. S[[Γ `s S : τ (]](ρ)((a a′) · d) Cstk
τ S[ψ] ◦ swap a, a′ in [–].

(5.39)

Thus we require that for any d Cval
τ v then

S[[Γ `s S : τ (]](ρ)((a a′) · d) = > ⇒ 〈S[ψ] ◦ swap a, a′ in [–], v〉↓ .

110 5. Computational adequacy

Therefore using the definition of the termination relation it suffices to show

that

S[[Γ `s S : τ (]](ρ)((a a′) · d) = > ⇒ 〈S[ψ], (a a′) · v〉↓

and this follows from (5.31) by equivariance of Cval
τ . Thus we have (5.39)

which implies (5.38), which in turn implies (5.37). Then we have (5.35) as

required.

I Case (stk-swap-2). Given a typing judgement Γ `s swap a, [–] in e′′ :

name (, which must have been derived from Γ `s S : τ (and

Γ` e′′ : τ , consider some ρ CΓ ψ. We have by the induction hypothesis that

∀d Cval
τ v. S[[Γ `s S : τ (]](ρ)(d) = > ⇒ 〈S[ψ], v〉↓; (5.40)

∀σ′ Cstk
τ S′. E [[Γ ` e′′ : τ]](ρ)(σ′) = > ⇒ 〈S′, e′′[ψ]〉↓ . (5.41)

We also have by assumption that for any a′ ∈ A⊥,

S[[Γ `s S ◦ swap a, [–] in e′′ : name (]](ρ)(a′) = > (5.42)

(which implies that a′ 6= ⊥) and we want 〈S[ψ] ◦ swap a, [–] in e′′, a′〉↓. It

therefore suffices to show that

〈S[ψ] ◦ swap a, a′ in [–], e′′[ψ]〉↓ . (5.43)

Expanding (5.42) yields that

E [[Γ ` e′′ : τ]](ρ)(λd ∈ [[τ]]. S[[Γ `s S : τ (]](ρ)((a a′) · d)) = >. (5.44)

We can thus obtain (5.43) from (5.41) if we can show that

λd ∈ [[τ]]. S[[Γ `s S : τ (]](ρ)((a a′) · d) Cstk
τ S[ψ] ◦ swap a, a′ in [–].

(5.45)

So take any d Cval
τ v. From (5.40) and equivariance of Cval

τ we know that

S[[Γ `s S : τ (]](ρ)((a a′) · d) = > ⇒ 〈S[ψ], (a a′) · v〉↓

But we can see from the definitions of Cstk
τ and the termination relation that

this is just (5.45). Thus we have (5.43) and can conclude.

I Case (stk-swap-3). Given a typing judgement Γ`sS◦swap a, a′ in [–] :

τ (, which must have been derived by knowing Γ`a : name, Γ`a′ : name

and Γ `s S : τ (, consider ρ CΓ ψ. Then the only non-trivial statement

provided by the induction hypothesis is that for all d Cval
τ v,

S[[Γ `s S : τ (]](ρ)(d) = > ⇒ 〈S[ψ], v〉↓ . (5.46)

5.4. Computational adequacy 111

We also have the assumption that for all such d and v,

S[[Γ `s S ◦ swap a, a′ in [–] : τ (]](ρ)(d) = >

and expanding this yields that

S[[Γ `s S : τ (]](ρ)((a a′) · d) = >. (5.47)

We need to show that 〈S[ψ] ◦ swap a, a′ in [–], v〉↓ holds. It thus suffices

to prove 〈S[ψ], (a a′) · v〉↓, which does indeed follow by combining (5.46)

with (5.47) and using the equivariance property of Cval
τ .

I Case (stk-let-abst). Given a judgement Γ`sS ◦let <<x>>x′ = [–] in e :

<<name>>τ (, which must have been derived by knowing Γ `s S : τ ′ (

and Γ, x 7→ name, x′ 7→ τ ` e : τ ′, consider ρ CΓ ψ. Then we can

use the definitions of S[[–]] and the termination relation together with the

equivariance property of the latter to calculate that we must prove for all

[a1]d Cval
<<name>>τ <<a2>>v and any a ∈ A \ supp(S, a1, d, a2, v, e, ρ) that

E [[Γ, x 7→ name, x′ 7→ τ ` e : τ ′]](ρ[x 7→ a, x′ 7→ (a a1) · d])
(S[[Γ `s S : τ ′ (]](ρ)) = > ⇒

〈S[ψ], e[ψ[a/x, (a a2) · v/x′]]〉↓ . (5.48)

Since [a1]d Cval
<<name>>τ <<a2>>v then by virtue of property (5.4) we know

that (a a1) · d Cval
τ (a a2) · v. Thus for any ρ CΓ ψ then

ρ[x 7→ a, x′ 7→ (a a1) · d] CΓ,x 7→name,x′ 7→τ ψ[a/x, (a a2) · v/x′]. (5.49)

The induction hypothesis gives us the following.

Γ `s S : τ ′ (⇒
∀ρ CΓ ψ. S[[Γ `s S : τ ′ (]](ρ) Cstk

τ S[ψ] (5.50)

Γ, x 7→ name, x′ 7→ τ ` e : τ ′ ⇒
∀ρ CΓ ψ. E [[Γ, x 7→ name, x′ 7→ τ ` e : τ ′]](ρ) Cexp

τ e[ψ] (5.51)

Proceeding in a similar manner to previous cases, we can now use (5.49) to

satisfy the universal quantification in (5.50) so that we can combine (5.48)

and (5.51) to get the result.

The final part of the proof concerns the cases for expressions which are

not necessarily in canonical form. We give the three most interesting cases.

I Case (exp-val). Given some canonical form v and a valid typing judge-

ment Γ ` v : τ , we wish to know that for all ρ CΓ ψ, E [[Γ ` v : τ]](ρ) Cexp
τ

112 5. Computational adequacy

v[ψ]. That is to say, for all σ Cstk
τ S, E [[Γ ` v : τ]](ρ)(σ) = > ⇒ 〈S, v[ψ]〉↓ .

Expanding the definition of E [[–]] this is equivalent to

σ(V[[Γ ` v : τ]](ρ)) = > ⇒ 〈S, v[ψ]〉↓ . (5.52)

Since σ Cstk
τ S then for all v′ Cval

τ d′, σ(d′) = > ⇒ 〈S, v′〉↓ and so by the

induction hypothesis we can set d′ = V[[Γ ` v : τ]](ρ) and v′ = v[ψ] to yield

(5.52).

I Case (exp-fresh). Given the typing judgement Γ ` fresh : name then

we require new Cexp
τ fresh. That is to say for all σ Cstk

name S, we need

σ(a) = > ⇒ 〈S, a′〉↓ for a ∈ A \ supp(σ) and a′ ∈ A \ supp(S). Let us set

a = a′ and take a ∈ A \ supp(σ, S). Then σ(a) = > ⇒ 〈S, a〉↓⇔ 〈S, fresh〉↓
since σ Cstk

name S.

I Case (exp-abst). Given a valid typing judgement Γ`<<e>>e′ : <<name>>τ ,

which must have been derived by knowing Γ`e : name and Γ`e′ : τ , consider

ρ CΓ ψ. We calculate that we must prove

E [[Γ ` <<e>>e′ : <<name>>τ]](ρ)(σ) = > ⇒ 〈S ◦ <<[–]>>e′[ψ], e[ψ]〉↓

for all σ Cstk
<<name>>τ S and all ρ CΓ ψ. Expanding the definition of E [[–]] this

is:

E [[Γ ` e : name]](ρ)

(λa ∈ [[name]]. E [[Γ ` e′ : τ]](ρ)(λd ∈ [[τ]]. σ([a]d))) = > ⇒
〈S ◦ <<[–]>>e′[ψ], e[ψ]〉↓ . (5.53)

The induction hypothesis tells us that for all σ1 Cstk
name S1 and all σ2 Cstk

τ S2,

E [[Γ ` e : name]](ρ)(σ1) = > ⇒ 〈S1, e[ψ]〉↓ ; and (5.54)

E [[Γ ` e′ : τ]](ρ)(σ2) = > ⇒ 〈S2, e
′[ψ]〉↓ . (5.55)

Using (5.53) and (5.54) we see that it suffices to show

λa ∈ [[name]]. E [[Γ ` e′ : τ]](ρ)(λd ∈ [[τ]]. σ([a]d)) Cstk
τ S ◦ <<[–]>>e′[ψ].

Take some d Cval
name v. If d = ⊥ then the implication is trivial. Otherwise,

write a for d (so a = v also). Then using the definitions of the termination

relation and Cstk
τ we deduce that we must prove

E [[Γ ` e′ : τ]](ρ)(λd ∈ [[τ]]. σ([a]d)) = > ⇒ 〈S ◦ <<a>>[–], e′[ψ]〉↓

5.4. Computational adequacy 113

which can be concluded from (5.55) if λd ∈ [[τ]]. σ([a]d) Cstk
τ S ◦ <<a>>[–]

holds. Taking some d Cval
τ v we therefore need σ([a]d) = > ⇒ 〈S, <<a>>v〉↓.

Let us take d 6= ⊥, for if it is bottom then the implication is trivial. This holds

since σ Cstk
<<name>>τ S and we can calculate7 that d Cval

τ v ⇒ [a]d Cval
<<name>>τ

<<a>>v. �

Corollary 5.4.12. For typeable closed values v, frame stacks S and expressions

e of type τ , τ (and τ respectively then

V[[v]] Cval
τ v and S[[S]] Cstk

τ S and E [[e]] Cexp
τ e.

Proof. Immediate from Theorem 5.4.11. �

Lemma 5.4.13. For a closed value v of type δ and d ∈ [[δ]], return(d) Cexp
δ v

implies that d = (i ◦ ink)(dk) and v = Ck(vk) for some 1 6 vk 6 K, closed vk

of type σk and dk ∈ [[σk]].

Proof. By virtue of i being an isomorphism, each d ∈ [[δ]] may be expressed

as (i ◦ ink)(dk). The typing rules of Mini-FreshML mean that each v of type

δ must be of the form Ck′(vk′). It remains to show that k = k′.

For each 1 6 k 6 K, construct the frame stack Sk : δ (as follows:

Sk
def= [] ◦ match [–] with · · · | Cj(xj) -> t(j, k, xj) | · · ·

where t(–, –, –) is defined like so, for some divergent term Ω:

t(j, k, xj)
def=

Cj(xj) if j = k;

Ω otherwise.

Corollary 5.4.12 tells us that S[[Sk]] Cstk
δ Sk. But since return(d) Cexp

δ v then

∀σ Cstk
δ S. σ((i ◦ ink)(dk)) = > ⇒ 〈S, Ck′(vk′)〉↓

and therefore S[[Sk]]((i ◦ ink)(dk)) = > ⇒ 〈Sk, Ck′(vk′)〉 ↓. The left-hand

side of this may be seen to hold always by expanding the definition of S[[–]];

therefore 〈Sk, Ck′(vk′)〉↓ holds. But this can only hold if k = k′. �

The following lemma is needed to derive some extensionality properties

of Mini-FreshML which we shall come to in due course. It tells us about the

relationship between Cexp
τ and Cval

τ when only canonical forms are involved.

7In a similar manner to the (val-abst) case.

114 5. Computational adequacy

Lemma 5.4.14 (Canonical forms in Cexp
τ). For a closed value v of type τ

and d ∈ [[τ]], return(d) Cexp
τ v implies that d Cval

τ v.

Proof. In the case where d = ⊥, the lemma is trivial. Otherwise, we assume

d 6= ⊥ and proceed by induction on the structure of the value v. A tricky

proof, whose multiple nested implications demand great care.

I Cases (unit)–(name) are trivial by virtue of simple properties of Cval
τ .

I Case (data). Assume return(d) Cexp
δ v. Lemma 5.4.13 then tells us that d

must be of the form (i◦ink)(dk) and v must be of the form Ck(vk). Therefore

∀σ Cstk
δ S. σ((i ◦ ink)(dk)) = > ⇒ 〈S, Ck(vk)〉↓ . (5.56)

The induction hypothesis tells us that return(dk) Cexp
σk vk ⇒ dk Cval

σk
vk.

Since we wish to know that d Cval
δ v then by expanding the definition of Cexp

τ

we can see that it suffices to show for all σ′ Cstk
σk

S′, σ′(dk) = > ⇒ 〈S′, vk〉↓.
Taking any such σ′ Cstk

σk
S′ and assuming that σ′(dk) = >, construct the

frame stack S : δ (and element σ ∈ [[δ]]⊥ as follows:

S
def= S′ ◦ match [–] with · · · | Ck(xk) -> xk | · · ·

σ
def= λd ∈ [[δ]]. σ′((i ◦ ink)−1(d)).

Calculating that σ Cstk
δ S, we can deduce from (5.56) that 〈S, Ck(vk)〉↓. But

this must have been derived by knowing that 〈S′, vk〉↓ as required.

I Case (abst). Assume return(d) Cexp
<<name>>τ v. Since d 6= ⊥, it is of the

form [a]d′ with d′ 6= ⊥ and v is of the form <<a′>>v′. Therefore,

∀σ Cstk
<<name>>τ S. σ([a]d′) = > ⇒ 〈S, <<a′>>v′〉↓ . (5.57)

We need to show that [a]d′ Cval
<<name>>τ <<a′>>v′. That is to say, for any a′′ /∈

supp(a, a′, d′, v′) then (a a′′) ·d′ Cval
τ (a′ a′′) ·v′. This can be done by applying

the induction hypothesis in the form: return((a a′′) · d′) Cexp
τ (a′ a′′) · v′ ⇒

(a a′′) ·d′ Cval
τ (a′ a′′) ·v′ (since swapping does not affect the size of the value

v′). Then by expanding the definition of Cexp
τ we can see it suffices to show

that the following implication holds: for any σ′ Cstk
τ S′, then σ′((a a′′) ·d′) =

> ⇒ 〈S′, (a′ a′′) · v′〉↓.
Assume σ′(d′) = > and construct the stack S : <<name>>τ (together

with the element σ ∈ [[<<name>>τ]]⊥ as follows8:

S
def= S′ ◦ let <<x>>x′ = [–] in x′

8σ is well-defined for the same reasons as new (p.85).

5.4. Computational adequacy 115

σ
def= λ[a]d′ ∈ [[<<name>>τ]]. σ′((a a′′) · d′) (a′′ /∈ supp(σ, a, a′, d′, v′)).

One can calculate that σ Cstk
<<name>>τ S. Since σ′((a a′′) · d′) = >, then we

have σ([a]d′) = σ′((a a′′) ·d′) = >. Therefore we can apply (5.57) to deduce

that 〈S, <<a′>>v′〉↓; that is to say, 〈S′ ◦let <<x>>x′ = [–] in x′, <<a′>>v′〉↓.
This must have been deduced by knowing that 〈S′, (a′ a′′)·v′〉↓ (note that we

can use the same a′′ here by virtue of the conditions which we have placed

upon it), which is just what we require.

I Case (pair). Assume return(d) Cexp
τ×τ ′ v. Since d 6= ⊥, it must be of

the form 〈d1, d2〉 with d1, d2 6= ⊥ and v must be of the form (v1, v2); we

therefore have

∀σ Cstk
τ×τ ′ S. σ(〈d1, d2〉) = > ⇒ 〈S, (v1, v2)〉↓ . (5.58)

The induction hypothesis tells us that return(d1) Cexp
τ v1 ⇒ d1 Cval

τ v1 and

return(d2) Cexp
τ ′ v2 ⇒ d2 Cval

τ ′ v2. We need to show that d Cval
τ×τ ′ v; that is to

say, d1 Cval
τ v1 and d2 Cval

τ ′ v2. The definition of Cexp
τ implies that it suffices

to show that for all σ1 Cstk
τ S1 and σ2 Cstk

τ ′ S2, σ1(d1) = > ⇒ 〈S1, v1〉↓ and

σ2(d2) = > ⇒ 〈S2, v2〉↓.
So assume that for σ1 Cstk

τ S1 and σ2 Cstk
τ ′ S2, σ1(d1) = > and σ2(d2) =

>. Now construct the following stacks S, S′ : τ × τ ′ (and elements σ,

σ′ ∈ [[τ × τ]]⊥:

S
def= S1 ◦ let (x, x′) = [–] in x

S′
def= S2 ◦ let (x, x′) = [–] in x′

σ
def= λ〈d1, d2〉 ∈ [[τ × τ ′]]. d1

σ′
def= λ〈d1, d2〉 ∈ [[τ × τ ′]]. d2.

One can calculate from these definitions that σ Cstk
τ×τ ′ S and σ′ Cstk

τ×τ ′ S
′.

Since d2 6= ⊥ then σ〈d1, d2〉 = σ1(d1) = >. It follows from (5.58) that

〈S, (v1, v2)〉↓. But this must have been derived by knowing that 〈S1, v1〉↓. A

similar argument applies with σ′ and S′ to deduce that 〈S2, v2〉↓ as required.

I Case (fun). Assume return(d) Cexp
τ→τ ′ v. Then v must be of the form

fun f(x) = e. We therefore have

∀σ Cstk
τ→τ ′ S. σ(d) = > ⇒ 〈S, fun f(x) = e〉↓ . (5.59)

We wish to know that d Cval
τ→τ ′ v; that is to say, for all d′ Cval

τ v′ then

d(d′) Cexp
τ ′ v v′. This in turn holds just when for all σ′ Cstk

τ ′ S′, d(d′)(σ′) =

116 5. Computational adequacy

> ⇒ 〈S′, v v′〉↓. Choosing any d′ Cval
τ v′ and σ′ Cstk

τ ′ S
′ then define the stack

S : (τ → τ ′) (and the element σ ∈ [[τ → τ ′]]⊥ as follows:

S
def= S′ ◦ [–] v′

σ
def= λd ∈ [[τ → τ ′]]. d(d′)(σ′).

We calculate that σ Cstk
τ→τ ′ S. Since we assumed d(d′)(σ′) = > then σ(d) =

>; thus (5.59) gives 〈S′ ◦ [–] v′, fun f(x) = e〉↓. This implies that 〈S′, v v′〉↓
as required. �

Definition 5.4.15 (The relations 6v and 6e). The type-respecting relation

6e, written Γ ` e 6e e
′ : τ , holds iff the expressions e and e′ may both be

assigned type τ in typing context Γ and for all ρ CΓ ψ, E [[Γ ` e : τ]](ρ) Cexp
τ

e′[ψ]. We write e 6e e
′ iff e and e′ are closed expressions in the relation.

The type-respecting relation 6v, written Γ ` v 6v v
′ : τ , holds iff the

expressions in canonical form v and v′ may both be assigned type τ in typing

context Γ and for all ρ CΓ ψ then V[[Γ ` v : τ]](ρ) Cval
τ v′[ψ]. We write

v 6v v
′ iff v and v′ are closed expressions in the relation. �

Lemma 5.4.16 (6v contained within 6e). For expressions in canonical form

v and v′ which may be assigned type τ in typing context Γ then

Γ ` v 6v v
′ : τ ⇒ Γ ` v 6e v

′ : τ.

Proof. It suffices to show that for all ρ CΓ ψ,

V[[Γ ` v : τ]](ρ) Cval
τ v′[ψ] ⇒ λσ ∈ [[τ]]⊥. σ(V[[Γ ` v : τ]](ρ)) Cexp

τ v′[ψ].

By definition of Cexp
τ this is equivalent to asking that

V[[Γ ` v : τ]](ρ) Cval
τ v′[ψ] ⇒

∀σ Cstk
τ S. σ(V[[Γ ` v : τ]](ρ)) = > ⇒ 〈S, v′[ψ]〉↓

which holds by virtue of the definition of Cstk
τ . �

Lemma 5.4.17 (Compositionality). For typeable expressions e, e′ and con-

texts C such that C[e] and C[e′] are also typeable then

Γ ` e 6e e
′ : τ ⇒ Γ ` C[e] 6e C[e′] : τ ′.

5.4. Computational adequacy 117

Proof. The lemma is proved by induction on the structure of the context C.

We give just a single case here to illustrate the logic behind the proof.

I Case (abst). For contexts C and C ′ we wish to show that Γ ` e 6e

e′ : τ ⇒ Γ ` (<<C>>C ′)[e] 6e (<<C>>C ′)[e′] : <<name>>τ ′. That is to say,

Γ ` e 6e e
′ : τ ⇒ Γ ` <<C[e]>>C ′[e] 6e <<C[e′]>>C ′[e′] : <<name>>τ ′. As

induction hypotheses we have

Γ ` e 6e e
′ : τ ⇒ Γ ` C[e] 6e C[e′] : name; (5.60)

Γ ` e 6e e
′ : τ ⇒ Γ ` C ′[e] 6e C

′[e′] : τ ′ (5.61)

and as further assumptions we have that for all ρ CΓ ψ and σ Cstk
<<name>>τ ′ S,

Γ ` e 6e e
′ : τ ; (5.62)

E [[Γ ` <<C[e]>>C ′[e] : <<name>>τ ′]](ρ)(σ) = >. (5.63)

Expanding (5.63) then we obtain

E [[Γ ` C[e] : name]](ρ) (5.64)

(λa ∈ [[name]]. E [[Γ ` C ′[e] : τ ′]](ρ)(λd ∈ [[τ ′]]. σ([a]d))) = >.

We need to show that 〈S, (<<C[e′]>>C ′[e′])[ψ]〉↓. It therefore suffices to show

that 〈S◦<<[–]>>(C ′[e′])[ψ], (C[e′])[ψ]〉↓. This follows from (5.60), (5.62) and

5.64 so long as λa ∈ [[name]]. E [[Γ ` C ′[e] : τ ′]](ρ)(λd ∈ [[τ ′]]. σ([a]d)) Cstk
name

S ◦ <<[–]>>C ′[e′][ψ]. To see this, we use the definition of Cstk
name: take any

a ∈ A (for the bottom case is trivial) and assume

E [[Γ ` C ′[e] : τ ′]](ρ)(λd ∈ [[τ ′]]. σ([a]d)) = >. (5.65)

We need to prove that 〈S ◦ <<[–]>>C ′[e′][ψ], a〉↓. It therefore suffices to show

that 〈S ◦ <<a>>[–], C ′[e′][ψ]〉↓ holds. We can prove this from (5.61), (5.62)

and (5.65) by showing that λd ∈ [[τ ′]]. σ([a]d) Cstk
τ S ◦ <<[–]>>C ′[e′][ψ].

Taking any d Cval
τ ′ v and expanding the definition of Cstk

τ , we have to show

that 〈S ◦ <<a>>[–], v〉↓ holds given that σ([a]d) = >. It therefore suffices

to show that 〈S, <<a>>v〉↓, which holds since σ Cstk
τ S and [a]d Cval

<<name>>τ ′

<<a>>v. �

5.4.4 Completing the proof

We are now in a position to state the proof of the ‘computational adequacy’

result, which we recall was as follows:

118 5. Computational adequacy

Given a typing context Γ and a typeable expression e such that Γ ` e : τ , then

for all closed frame stacks S of type τ (and substitutions9 ψ ∈ SubstΓ

E [[Γ ` e : τ]]V[[ψ]]S[[S]] = > ⇔ 〈S, e[ψ]〉↓ . (5.66)

Thus if e is a closed expression we have that

E [[e]]S[[S]] = > ⇔ 〈S, e〉↓ . � (5.67)

Proof. We start by proving (5.67), for having established this then we can

deduce that for expressions e and substitutions ψ as above, E [[e[ψ]]]S[[S]] =

> ⇔ 〈S, e[ψ]〉↓. Then we can apply Lemma 5.3.4 to obtain (5.66).

Now the forwards direction of (5.67) follows immediately by combining

Corollary 5.4.12 first with (5.7) and secondly with (5.8). For the reverse

direction (the ‘soundness’ property of the denotational semantics) we show

that the property

Φ(S, e) def= 〈S, e〉↓⇒ E [[e]]S[[S]] = >

is closed under the axiom and rules defining the termination relation (Fig-

ures 3.8 through 3.10). The induction splits into two halves, paralleling the

construction of the termination relation. For the first part, we take e to be a

canonical form (which we call v for clarity) and consider the possible cases

for S: here we give the interesting cases.

I Case (empty). In this case, 〈[], v〉↓ always holds; moreover, E [[v]]S[[[]]] is

equal to S[[[]]]V[[v]] which in turn is always >.

I Case (con). We wish to show Φ(S ◦ Ck([–]), v). By the induction hypoth-

esis we know 〈S, Ck(v)〉↓⇒ E [[Ck(v)]]S[[S]] = > and by assumption we have

that 〈S ◦ Ck([–]), v〉↓. Considering the derivation of this, we must have that

E [[Ck(v)]]S[[S]] = > and therefore (by definition) S[[S]]((i ◦ ink)(V[[v]])) =

>. However this is just S[[S ◦ Ck([–])]](v) by definition of S[[–]]; therefore,

E [[v]]S[[S ◦ Ck([–])]] = >.

I Case (pair-l). We wish to show Φ(S ◦ ([–], e), v). The induction hy-

pothesis tells us that 〈S ◦ (v, [–]), e〉↓⇒ E [[e]]S[[S ◦ (v, [–])]] = > and we

have by assumption that 〈S ◦ ([–], e), v〉↓. This must have been derived

by knowing that 〈S ◦ (v, [–]), e〉↓. We need that E [[v]]S[[S ◦ ([–], e)]] = >,

9Recall that ψ maps value identifiers to closed values; thus, e[ψ] must be a closed

expression since e is typeable in context Γ.

5.4. Computational adequacy 119

i.e. E [[e]](λd′ ∈ [[τ ′]]. S[[S]]〈V[[v]], d′〉) = >. But this is just E [[e]]S[[S ◦ (v, [–])]]

and so we are done.

I Case (pair-r). We wish to show Φ(S ◦ (v, [–]), v′). By the induction

hypothesis we have that 〈S, (v, v′)〉↓⇒ E [[(v, v′)]]S[[S]] = >. The right-

hand side of this holds by virtue of the assumption (in a similar manner to

the previous case); expanding this yields that S[[S]]〈V[[v]],V[[v′]]〉 = >. We

wish to show that V[[v′]]S[[S ◦ (v, [–])]] = >, i.e. S[[S]]〈V[[v]],V[[v′]]〉 = >.

But we already have this from above.

I Cases (abst-l) and (abst-r) argue in the same way as for (pair-l) and

(pair-r), mutatis mutandis.

I Case (swap-1). We wish to show that Φ(S ◦swap [–], e′ in e′′, v) holds.

Proceeding in a similar manner to the previous case, we obtain from the

induction hypothesis that E [[e′]]S[[S ◦ swap v, [–] in e′′]] = >. We need to

show that E [[v]]S[[S ◦ swap [–], e′ in e′′]] = >, the left-hand side of which

(by definition of E [[–]] and S[[–]]) is just E [[e′]]S[[S ◦ swap v, [–] in e′′]]. This

is equal to > from above.

I Case (swap-2). Proceeds in a similar manner to the previous case; we

omit the details.

I Case (app-l). We wish to show that Φ(S ◦ [–] e′, v) holds; we thus require

that under the assumption 〈S ◦ [–] e′, v〉↓ then E [[v]]S[[S ◦ [–] e′]] = >. This

is just E [[e′]]S[[S ◦ v [–]]] = > which again holds by virtue of the induction

hypothesis.

I Case (app-r). A more interesting case to break the monotony. We

wish to show that Φ(S ◦ v [–], v′) holds. We assume that 〈S ◦ v [–], v′〉 ↓,
where v is of the form fun f(x) = e and of type τ → τ ′. By consider-

ing how this must have been derived, the induction hypothesis yields that

E [[e[v/f, v′/x]]]S[[S]] = >. We need to prove that E [[v′]]S[[S ◦ v [–]]] = >, i.e.

(V[[v]] V[[v′]])S[[S]] = >. By expanding the definition of V[[–]] this is

E [[{f : τ → τ ′, x : τ} ` e : τ ′]]{f 7→ V[[v]], x 7→ V[[v′]]}S[[S]] = >.

Now we can apply the substitutivity property of the denotational semantics

(Lemma 5.3.4) to deduce that this equivalent to E [[e[v/f, v′/x]]]S[[S]] = >,

which holds from the induction hypothesis.

I Case (let). We wish to prove that Φ(S ◦ let x = [–] in e′, v), where

` v : τ ′ and {x : τ ′} ` e′ : τ . We assume that 〈S ◦ let x = [–] in e′, v〉↓
holds; this must have been derived by knowing that 〈S, e′[v/x]〉↓. We can

120 5. Computational adequacy

then apply the induction hypothesis to deduce that E [[e′]]S[[S]] = >. We need

to prove that E [[v]]S[[S ◦ let x = [–] in e′]] = >. Expanding the left-hand

side of this yields E [[{x : τ ′} ` e′ : τ]]V[[v]]. Applying Lemma 5.3.4 once

again, we see that this is equivalent to E [[e′[v/x]]]. This is equal to > from

the induction hypothesis.

I Case (let-pair). As for (let-abst), mutatis mutandis.

I Case (let-abst). Given ` v : <<name>>τ ′ and {x : name, x′ : τ ′} ` e′ : τ

then we wish to prove that Φ(S ◦let <<x>>x′ = [–] in e′, v). We therefore

have the assumption 〈S ◦ let <<x>>x′ = [–] in e′, v〉 ↓ which must have

been derived by knowing that 〈S, e′[a/x, ((a a′)·v′)/x′]〉↓, where v = <<a>>v′

and a′ ∈ A \ supp(S, a, v, e′). We can thus apply the induction hypothesis to

deduce that

E [[e′[a/x, ((a a′) · v′)/x′]]]S[[S]] = >. (5.68)

What we want to know is E [[<<a>>v′]]S[[S ◦ let <<x>>x′ = [–] in e′]] = >.

Expanding the left-hand side of this yields

E [[{x : name, x′ : τ ′} ` e′ : τ]]{x 7→ a′′, x′ 7→ (a a′′) · V[[v′]]}S[[S]]

for any atom a′′ ∈ A \ supp(S, a, v′, e′). Applying Lemma 5.3.4 once again,

we see that this is equivalent to E [[e′[a′′/x, (a a′′) · v′]]]S[[S]]. Now, we can

always choose a′ to be the same as a′′ (by selecting one which lies in A \
supp(S, a, v, v′, e′))—meaning that we can conclude by virtue of (5.68).

I Case (match). We wish to show

Φ(S ◦ match [–] with · · · | Ck(xk) -> ek | · · · , v)

holds. By the induction hypothesis we know that there exists some 1 6 k 6

K such that

〈S, ek[vk/xk]〉↓⇒ E [[ek[vk/xk]]]S[[S]] = >, (5.69)

where v is of the form Ck(vk). Now, given the assumption

〈S ◦ match [–] with · · · | Ck(xk) -> ek | · · · , v〉↓

then the left-hand side of (5.69) must hold in the derivation from the ter-

mination relation. It therefore suffices to prove that E [[ek[vk/xk]]]S[[S]] = >
implies

E [[v]]S[[S ◦ match [–] with · · · | Ck(xk) -> ek | · · ·]] = >.

5.4. Computational adequacy 121

Expanding the definitions of E [[–]] and S[[–]], this is equivalent to

E [[{xk : σk} ` ek : τ]]{xk 7→ dk}S[[S]] = > (5.70)

for the unique dk such that (i ◦ ink)(dk) = V[[v]]. But since v is of the form

Ck(vk), then (i ◦ ink)(dk) = V[[Ck(vk)]] = (i ◦ ink)V[[vk]]. Thus dk = V[[vk]]

and so we can apply Lemma 5.3.4 to deduce that (5.70) is equivalent to

E [[ek[vk/xk]]]S[[S]] = >, which holds by assumption.

For the second part of the proof, we take e to be non-canonical. These

cases are more straightforward10 and we only provide some salient ones.

I Case (nc-con). We wish to show Φ(S, Ck(e)). Calculate from the induc-

tion hypothesis and our assumption 〈S, Ck(e)〉↓ that E [[e]]S[[S ◦ Ck([–])]] =

>. It is necessary to show that E [[Ck(e)]]S[[S]] = >; this follows immediately

from the previous sentence and the definition of E [[–]].

I Case (nc-fresh). We wish to show that Φ(S, fresh) holds. Consequently

we have the assumption that 〈S, fresh〉↓; this must have been derived by

knowing that 〈S, a〉 ↓ for some a not in the support of S. We need that

E [[fresh]]S[[S]] = >, i.e. S[[S]](a) = > for similar a. But the induction hy-

pothesis tells us that E [[a]]S[[S]] = >, which is just S[[S]](a) = > as required.

I Cases (nc-pair) and (nc-app) are as for case (abst), mutatis mutandis.

I Case (nc-abst). We wish to show that Φ(S, <<e>>e′) holds. Assuming that

〈S, <<e>>e′〉↓ then the induction hypothesis yields E [[e]]S[[S ◦ <<[–]>>e′]] = >.

We wish to know E [[<<e>>e′]]S[[S]] = >, which immediately expands to this

equality.

I Case (nc-swap). We need that Φ(S, swap e, e′ in e′′). Take as assump-

tion that 〈S, swap e, e′ in e′′〉↓. The induction hypothesis gives that

E [[e]]S[[swap [–], e′ in e′′]] = >.

We need E [[swap e, e′ in e′′]]S[[S]] = >; however, this is equivalent to the

previous statement just by expanding the definitions of E [[–]] and S[[–]]. �

10Basically because if viewing the termination relation from an ‘abstract machine’

perspective, the actions taken upon encountering a non-canonical form do not vary a great

deal. The vast majority of them consist of simply picking the first sub-expression to be

evaluated and considering the termination of that in a frame stack directly derived from the

original expression.

122 5. The road to equivalence

5.5 The road to equivalence

In this section we are going to derive some properties of the denotational

semantics which will enable us to connect with the notions of observational

equivalence from Chapter 3. The first task is to show that CIU-equivalence

and contextual equivalence coincide for Mini-FreshML. In order to do this,

we go via the families of logical relations.

Lemma 5.5.1 (CIU-preorder coincides with 6e). For expressions e, e′ then

Γ ` e ≺ciu e
′ : τ ⇔ Γ ` e 6e e

′ : τ .

Proof. For the forwards direction, by definition of ≺ciu and Cexp
τ we have as

assumptions that

∀S : τ (, ψ ∈ SubstΓ. 〈S, e[ψ]〉↓ ⇒ 〈S, e′[ψ]〉↓ ; (5.71)

for all σ Cstk
τ S′, E [[e]](σ) = >. (5.72)

By Corollary 5.4.12 we have that S[[S]] Cstk
τ S for each S of type τ (.

The result then follows immediately from (5.71), (5.72) and the computa-

tional adequacy result (Theorem 5.4.1). The reverse direction is similarly

straightforward. �

Lemma 5.5.2 (≈ciu contained within ≈ctx). The relation ≺ciu is contained

within ≺ctx, so each CIU-equivalence is also a contextual equivalence.

Proof. It obviously suffices to consider the pre-orders. Take expressions e, e′

such that Γ ` e ≺ciu e
′ : τ . By Lemma 5.5.1 we then deduce Γ ` e 6e e

′ : τ .

Given any closing context C such that C[e] and C[e′] are well-typed then we

wish to show that 〈[], C[e]〉↓ implies 〈[], C[e′]〉↓. Assuming 〈[], C[e]〉↓ holds,

we know by adequacy (Theorem 5.4.1) that E [[C[e]]]S[[[]]] = >. Since 6e is

a congruence (Lemma 5.4.17) we also have that C[e] 6e C[e′]. Combining

these two facts with property (5.8) yields that 〈[], C[e′]〉↓ as required. �

We aim to show that ≺ctx is contained within ≺ciu to enable us to deduce

that the two relations coincide. To do this we must make use of Lemma 5.5.2

to prove the following substitutivity property of contextual equivalence.

Lemma 5.5.3. For a typing context Γ, an identifier x /∈ dom(Γ), a value v

(not containing x) such that for some τ , ` v : τ and expressions e, e′ then

Γ, x : τ ` e ≺ctx e
′ : τ ′ ⇒ Γ ` e[v/x] ≺ctx e

′[v/x] : τ ′.

5.5. The road to equivalence 123

Thus for substitutions φ with domain X = {x1, . . . , xn}, a typing context Γ

(with X chosen suitably so that dom(Γ) ∩X = ∅) and expressions e, e′ then

Γ, x1 : τ1, · · · , xn : τn ` e ≺ctx e
′ : τ ′ ⇒ Γ ` e[ψ] ≺ctx e

′[ψ] : τ ′.

where for all 1 6 k 6 n we have that ` ψ(xk) : τk.

Proof. It is straightforward to see that the second sentence follows from the

first. For the latter, first note that for a fresh identifier f not occurring in

e or v, then Γ ` (fun f(x) = e)(v) ≈ciu e[v/x] : τ ′ holds by virtue of the

definition of 〈–, –〉↓. Since we have established that every CIU-equivalence

is also a contextual equivalence, then we also have

Γ ` (fun f(x) = e)(v) ≈ctx e[v/x] : τ ′. (5.73)

Now given Γ, x : τ ` e ≺ctx e′ : τ ′ then for any context C binding x,

Γ`C[e] ≺ctx C[e′] : τ since ≺ctx is a congruence. Setting C to be the context

(fun f(x) = [–])(v), Γ ` (fun f(x) = e)(v) ≺ctx (fun f(x) = e′)(v) : τ .

But from (5.73) this implies that Γ ` e[v/x] ≺ctx e
′[v/x] : τ . �

Lemma 5.5.4 (≈ctx contained within ≈ciu). The relation ≺ctx is contained

within ≺ciu and thus each contextual equivalence is also a CIU-equivalence.

Proof. Recalling the definition of Ctxt(–) from §3.4, consider two expressions

e, e′ related by the contextual pre-order, Γ ` e ≺ctx e
′ : τ . Therefore for any

context C, 〈[], C[e]〉↓ implies that 〈[], C[e′]〉↓. We need to show that Γ`e ≺ciu

e′ : τ , so we assume that for any frame stack S of type τ (and closing

substitution ψ then 〈S, e[ψ]〉↓. But if this holds then the forwards direction

of Lemma 3.6.3 tells us that 〈[], (Ctxt(S))[e[ψ]]〉↓ does also. This implies that

〈[], (Ctxt(S))[e′[ψ]]〉↓ (since e and e′ are related by≺ctx). Therefore 〈S, e′[ψ]〉↓
does indeed hold by the reverse direction of Lemma 3.6.3. �

Lemmata 5.5.2 and 5.5.4 immediately give us the following.

Theorem 5.5.5 (Coincidence). The relations of ≈ciu and ≈ctx coincide. �

We are shortly going to derive some extensionality properties of Mini-

FreshML contextual equivalence. These will enable us to take two values

which are contextually equivalent and deduce properties about the con-

textual equivalence of their innards; or indeed the converse. In order to

prove these properties, we shall require the following lemma which relates

contextual preorder to the logical relations.

124 5. The road to equivalence

Lemma 5.5.6. Given expressions e, e′ and canonical forms v, v′ then Γ`e ≺ctx

e′ : τ ⇔ Γ ` e 6e e
′ : τ ; also, Γ ` v ≺ctx v

′ : τ ⇔ Γ ` v 6v v
′ : τ .

Proof. The first bi-implication holds by Theorem 5.5.5 and Lemma 5.5.1. For

the forwards direction of the second we have that Γ ` v ≺ctx v
′ : τ , which

by the same Theorem and Lemma is equivalent to stating Γ ` v ≺ciu v
′ : τ .

This in turn implies Γ ` v 6e v
′ : τ by Lemma 5.5.1. Lemma 5.4.14 then

enables us to deduce that in fact Γ ` v 6v v
′ : τ . In the reverse direction,

Lemma 5.4.16 tells us that Γ ` v 6v v
′ : τ implies Γ ` v 6e v

′ : τ , which in

turn implies Γ ` v ≺ctx v
′ : τ as previously. �

Corollary 5.5.7 (Extensionality). For closed values v, v′, etc. we have the

following extensionality results.

. For unit values: ` v ≈ctx v
′ : unit⇔ v = v′ = ().

. For names: For all a, a′ ∈ A, ` a ≈ctx a
′ : name⇔ a = a′.

. For data values: For 1 6 k 6 K,

` Ck(v) ≈ctx Ck(v
′) : δ ⇔ ` v ≈ctx v

′ : σk.

. For pair values: ` (v1, v2) ≈ctx (v′1, v′2) : τ1 × τ2 iff

` v1 ≈ctx v
′
1 : τ1 ∧ ` v2 ≈ctx v

′
2 : τ2.

. For abstraction values: For all a, a′ ∈ A and any a′′ ∈ A \ supp(a, a′, v, v′),

` <<a>>v ≈ctx <<a′>>v′ : <<name>>τ ⇔ ` (a a′′) · v ≈ctx (a′ a′′) · v′ : τ.

. For function values: For closed values f , f ′,

` f ≈ctx f
′ : τ → τ ′ ⇔ ∀v ∈ Valτ . ` f v ≈ctx f

′ v : τ ′.

Proof. Observing the properties (5.2)–(5.6) required of the logical relation

Cval
τ then the results follow by combining Lemma 5.5.6 with the definitions

of E [[–]] and V[[–]]. The most complicated case is that for function values,

which we give here.

I Case (fun). Given f ≈ctx f
′ then f ≺ctx f

′ and f ′ ≺ctx f . Without loss

of generality we may just consider the first case and show that f ≺ctx f
′ ⇔

∀v ∈ Valτ . f v ≺ctx f
′ v. By Lemma 5.5.6 it suffices to prove f 6v f

′ ⇔ ∀v ∈
Valτ . f v ≺ctx f

′ v. Observe that for closed values f of type τ → τ ′ and v of

type τ , then E [[f v]] = V[[f]]V[[v]]. So if f 6v f
′ then V[[f]] Cval

τ→τ ′ f
′; hence

5.5. The road to equivalence 125

for all v ∈ Valτ it follows (by the fundamental theorem and property (5.6)

of the logical relation) that V[[f]]V[[v]] Cexp
τ ′ f ′ v. Therefore E [[f v]] Cexp

τ ′ f ′ v

and so f v 6e f
′ v. It follows that ` f v ≺ctx f

′ v : τ ′; the reverse direction

is similarly straightforward. �

Our final theorem and corollary in this section show what we can deduce

when we know that two expressions, or canonical forms, have the same

denotation.

Theorem 5.5.8 (Equality of denotation). For expressions e, e′ and a type τ

such that Γ ` e : τ and Γ ` e′ : τ then

E [[Γ ` e : τ]] = E [[Γ ` e′ : τ]] ⇒ Γ ` e ≈ctx e
′ : τ. (5.74)

Proof. Assume that E [[Γ ` e : τ]] = E [[Γ ` e′ : τ]]. That is to say, forall ρ ∈
[[Γ]] then E [[Γ ` e : τ]](ρ) = E [[Γ ` e′ : τ]](ρ). In particular given any closing

substitution ψ ∈ SubstΓ then E [[Γ ` e : τ]]V[[ψ]] = E [[Γ ` e′ : τ]]V[[ψ]]. Thus

we can apply the computational adequacy result (Theorem 5.4.1) to deduce

that the left-hand side of (5.74) implies 〈S, e[ψ]〉↓⇔ 〈S, e′[ψ]〉↓ for all frame

stacks S of argument type τ . Therefore Γ ` e ≈ciu e
′ : τ , so Theorem 5.5.5

may be applied to deduce that Γ ` e ≈ctx e
′ : τ . �

Corollary 5.5.9 (Denotation of closed canonical forms). If τ and δ do

not involve any occurrences of the function space constructor → (making them

‘equality types’ in the Standard ML terminology) and v, v′ are closed values

of type τ , then we have full abstraction: V[[v]] = V[[v′]] ⇔ v ≈ctx v′. Thus

E [[v]] = E [[v′]] ⇔ v ≈ctx v
′.

Proof. The two bi-implications are clearly equivalent by virtue of Lemma

5.2.1. The forwards directions hold by virtue of Theorem 5.5.8. Considering

the first, in the reverse direction we proceed by induction on the typing

derivation of τ making use of the extensionality properties of Corollary

5.5.7. If τ = unit then v and v′ must be (); thus V[[v]] = V[[v′]]. Simi-

larly, if τ = name then v and v′ must both be the same atom and so we

are done. If τ is the data type δ, then v and v′ are of the form Ck(vk)

and Ck(v
′
k) respectively (for some 1 6 k 6 K), with V[[vk]] = V[[v′k]] by

the induction hypothesis. It thus follows that V[[v]] = V[[v′]] by definition

of V[[–]]. A similar argument applies at pair types. At abstraction types,

where v and v′ are of the form <<a1>>v1 and <<a2>>v2 respectively then

126 5. Algebraic identities

the induction hypothesis tells us that V[[(a1 a) · v1]] = V[[(a2 a) · v2]] for any

a ∈ A \ supp(a1, a2, v1, v2). Thus <<a1>>V[[v1]] = <<a2>>V[[v2]], which by

definition of V[[–]] is V[[<<a1>>v1]] = V[[<<a2>>v2]] as required. Finally, the

function type case is excluded by the conditions we impose above. �

5.6 Algebraic identities

We are now in a position to use our denotational semantics to verify al-

gebraic identities. For example, we can show that the semantics correctly

handles ‘garbage collection’ of fresh names by proving

e ≈ctx let x = fresh in e

when x is not free in e. This is done as follows.

E [[Γ ` let x = fresh in e : τ]](ρ)

= λσ ∈ [[τ]]⊥. E [[Γ ` fresh : name]](ρ)

(λa ∈ [[name]]. E [[Γ, x : name ` e : τ]] by definition of E [[–]]

(ρ[x 7→ a])(σ)

= λσ ∈ [[τ]]⊥. ditto,

E [[Γ, x : name ` e : τ]](ρ[x 7→ a])(σ) for a /∈ supp(e, σ, ρ)

= λσ ∈ [[τ]]⊥. E [[Γ ` e : τ]](ρ)(σ) by Lemma 3.2.3,

since x not free in e

= E [[Γ ` e : τ]](ρ) by η-reduction

⇒ e ≈ctx let x = fresh in e by Theorem 5.5.8.

Whilst we do claim that our semantics is good for verifying certain cor-

rectness results of Mini-FreshML, we do not claim that it is the be-all-and-

end-all. For there are certainly equivalences which we might wish to verify

that are not provable in our current system. We take as an example the

Mini-FreshML equivalent of an example presented by Stark[65, page 24,

equation 12]. This considers the two terms

let n = fresh in fun f(x) = if x = n then () else Ω

and fun g(x) = Ω, for a divergent term Ω of type unit. These two terms

are indeed contextually equivalent, by virtue of the fact that the name

(bound to n) encapsulated inside the support of the function f cannot be

determined externally. However, if we attempt to prove the contextual

5.7. Correctness of representation 127

equivalence of these two expressions via our denotational semantics then

we get stuck. The problem is that we need to deduce that the following are

equal:

λσ ∈ [[name→ unit]]⊥.

σ(λd ∈ [[name]]. λσ′ ∈ [[unit]]⊥. if a, d, σ′(>), σ′(⊥))

(for some a /∈ supp(σ)); and

λσ ∈ [[name→ unit]]⊥. σ(⊥).

So Corollary 5.5.9 notwithstanding, we believe (as would be expected) that

our semantics is in general not fully abstract. It seems likely that this is

the case not only for the usual sequentiality reasons (à la PCF) but also

due to the presence of the computational effects of generating fresh names.

Unfortunately, examples such as the above do not appear to give a definite

answer either way. However, recent work by Benton et al.[6] which uses a

continuation-based model based on ours to reason about mutable store does

support the view that the semantics is not fully abstract.

5.7 Correctness of representation

5.7.1 Background theory

In the previous sections we have established key properties of the denota-

tional semantics and shown how these may be used to prove results concern-

ing the operational behaviour of Mini-FreshML expressions. We now put this

machinery into operation and turn to the issue of proving the correctness

results from §3.7.

Recall the use of the untyped λ-calculus from that Section as an example

object language. In order to model λ-terms we can simply set K = 3, σ1 =

name, σ2 = <<name>>δ and σ3 = δ× δ. Then writing Var to stand for C1, Lam

to stand for C2 and App to stand for C3, the type δ corresponds to the Fresh

O’Caml declaration

type δ = Var of name | Lam of <<name>>δ | App of δ * δ.

The FM-cppo [[δ]] is the minimal invariant solutionD to the recursive domain

equation i : F (D) ∼= D, where

F (D) def= A⊕ ([A]D)⊕ (D ⊗D). (5.75)

128 5. Correctness of representation

Note that the description in §4.5 provides for a more general method of

solution than is required here, due to the lack of contravariant occurrences

of the variable D.

Definition 5.7.1 (Translation to values). For each λ-term t, define a Mini-

FreshML value [t]v ∈ Valδ by induction on the structure of t as follows.

[x]v
def= Var(x)

[λx. t]v
def= Lam(<<x>>[t]v)

[t t′]v
def= App([t]v, [t′]v).

Thus if t is a closed (resp. open) term, [t]v is a closed (resp. open) value. �

Lemma 5.7.2. The translation [–]v is equivariant: if x, x′ ∈ VId then (x x′) ·
[t]v = [(x x′) · t]v. �

Lemma 5.7.3. For all λ-terms t, t′ whose variables (free and bound) are

contained within a set of identifiers x = {x1, · · · , xn} and an injective value

substitution ψ : VId→A with dom(ψ) ⊆ x,

[t]v[ψ] ≈ctx [t′]v[ψ] ⇔ t ≡α t
′.

Proof. By induction on the structure of t. Note that at each stage we can

assume that the structure of t′ is the same as t, for in the forwards direction

this follows from the extensionality properties of Lemma 5.5.7 and in the

reverse direction this follows from the axiom and rules inductively defining

the relation ≡α (Definition 3.7.1).

I Case (var). For variables x, x′ (which must lie in the domain of ψ) then

we wish to know

Var(ψ(x)) ≈ctx Var(ψ(x′))⇔ x ≡α x
′.

In the forwards direction, the extensionality properties of Corollary 5.5.7

tell us that ψ(x) and ψ(x′) must be the same atom. Since ψ is injective then

x = x′ and therefore x ≡α x
′. In the reverse direction, we must have x = x′

and conclude by reflexivity of ≈ctx.

I Case (abst). We wish to know that

Lam(<<ψ(x)>>([t]v[ψ])) ≈ctx Lam(<<ψ(x′)>>([t]v[ψ]))⇔ λx. t ≡α λx
′. t′

5.7. Correctness of representation 129

for terms t, t′ and variables x, x′ in the domain of ψ. The extensionality

properties tell us that the left-hand side holds iff <<ψ(x)>>([t]v[ψ]) ≈ctx

<<ψ(x′)>>([t′]v[ψ]) and therefore just when

(ψ(x) a) · ([t]v[ψ]) ≈ctx (ψ(x′) a) · ([t′]v[ψ]) (5.76)

for some/any a ∈ A \ supp(ψ(x), ψ(x′), [t]v[ψ], [t′]v[ψ]). By the induction

hypothesis we have that [t]v[ψ] ≈ctx [t′]v[ψ] ⇔ t ≡α t
′, since all the variables

occurring in t and t′ are mapped by ψ. Moreover, we also have [t]v[ψ′] ≈ctx

[t′]v[ψ′] ⇔ t ≡α t
′, where ψ′ is that substitution ψ′ mapping a fresh variable

x′′ to a and acting as ψ otherwise. Since swapping does not affect the size

of the subterms t and t′ we can therefore deduce that

[(x x′′) · t]v[ψ′] ≈ctx [(x′ x′′) · t′]v[ψ′] ⇔ (x x′′) · t ≡α (x′ x′′) · t′.

Lemma 5.7.2 now tells us that (x x′′) · t ≡α (x′ x′′) · t′ iff (ψ′(x) ψ′(x′′)) ·
([t]v[ψ′]) ≈ctx (ψ′(x′) ψ′(x′′)) · ([t′]v[ψ′]). Now observe that: ψ′(x) = ψ(x)

(and similarly for x′); and [t]v[ψ′] = [t]v[ψ] (similarly for t′) since x′′ is fresh

for both t and t′. These facts together with the rule (3.8) enable us to deduce

(ψ(x) a) · ([t]v[ψ]) ≈ctx (ψ(x′) a) · ([t′]v[ψ]) ⇔ λx. t ≡α λx
′. t′.

However, the left-hand side of this holds by (5.76).

I Case (app). We wish to deduce that

[t1 t2]v[ψ] ≈ctx [t′1 t
′
2]v[ψ] ⇔ t1 t2 ≡α t

′
1 t

′
2 (5.77)

using the induction hypotheses: [t1]v[ψ] ≈ctx [t1]v[ψ] ⇔ t1 ≡α t′1 (and

similarly for t2, t′2). However, using the extensionality properties and the

rule (3.9) it is immediate that the conjunction of these two statements holds

just when (5.77) does also. �

In order to derive correctness results pertaining to expressions which are

not in canonical form we shall adopt a method due to Pitts (unpublished

manuscript). This identifies λ-terms in a certain way so as to make distinct

and disjoint the free and bound variables of each term—effectively enforcing

the Barendregt variable convention. For disjoint subsets x, x′ of VId, define

the subset Λ(x;x′) ⊆ Λ inductively by the following rules:

x ∈ x
x ∈ Λ(x, ∅)

t ∈ Λ({x}] x, x′)
λx. t ∈ Λ(x, {x} ∪ x′)

130 5. Correctness of representation

t ∈ Λ(x, x′1) t′ ∈ Λ(x, x′2) x′1 ∩ x′2 = ∅
t t′ ∈ Λ(x, x′1 ∪ x′2)

.

If t ∈ Λ(x, x′) then: the free variables of t are contained within x; the bound

variables of t are mutually distinct and are contained within x′; the sets of

free and bound variables of t are disjoint; and vars(t) ⊆ x ∪ x′. Each term

t ∈ Λ is α-equivalent to a term in Λ(x, x′) for some x, x′.

Lemma 5.7.4. For t ∈ Λ(x, x′) and an injective substitution ψ : VId → A

with dom(ψ) ⊆ x ∪ x′ then [t]e[ψ] ≈ctx [t]v[ψ] : lam.

Proof. Either a ‘denotational’ or ‘operational’11 approach may be taken; we

choose the former. By Theorem 5.5.8 it suffices to show that for all σ ∈
[[lam]]⊥,

E [[` [t]e[ψ] : lam]](∅)(σ) = σ(V[[` [t]v[ψ] : lam]](∅)).

That this is so follows by induction on the derivation of t ∈ Λ(x, x′).

I Case (var). Follows immediately from Lemma 5.2.1, since [x]e is a

canonical form.

I Case (abst). Under the assumption that E [[[t]e[ψ]]](σ) = σ(V[[[t]v[ψ]]]),

where t ∈ Λ({x}] x, x′) and dom(ψ) ⊆ {x}] x] x′, we wish to show that

E [[[λx. t]e[ψ]]](σ) = σ(V[[[λx. t]v[ψ]]]) (5.78)

where λx. t ∈ Λ(x, x′] {x}). Completely expanding the definition of E [[–]]

on the left-hand side we obtain

E [[[t]e[ψ|x]x′]]]{x 7→ a′}(λd ∈ [[lam]]. σ((i ◦ in2)[a′]d)) (5.79)

for some a′ ∈ A \ supp([t]v[ψ], [t]e[ψ], ψ(x), σ) and where ψ|x]x′ is the re-

striction of ψ to map only from x and x′. Observing that we have x /∈ x and

x /∈ x′, extend ψ|x]x′ to form a new substitution ψ′ behaving as ψ|x]x′ but

also mapping x to a′. This ψ′ is also injective and therefore we can make

use of the fact (Lemma 5.3.4) that E [[e]]{x 7→ a′} = E [[e[a′/x]]](∅) for any

expression e with a single free value identifier x of type name to deduce that

(5.79) is equivalent to

E [[[t]e[ψ′]]](λd ∈ [[lam]]. σ((i ◦ in2)[a′]d))

11Such a proof argues along the same lines, but mainly by making observations relating

to the termination relation. Morally speaking, we feel that the ‘denotational’ approach is

more in line with the style of semantics presented here.

5.7. Correctness of representation 131

which, via an application of the induction hypothesis contracts to

σ((i ◦ in2)[a′]V[[[t]v[ψ′]]]). (5.80)

Write a for the atom ψ(x). It remains to show that (5.80) is equal to

σ((i◦ in2)[a]V[[[t]v[ψ]]]), at which point we can apply the definition of V[[–]] to

conclude (5.78). By Lemma 4.2.24, since a 6= a′ and a /∈ supp([t]v[ψ]) then

it suffices to show that (a a′) · V[[[t]v[ψ]]] = V[[[t]v[ψ′]]]. The left-hand side of

this is equal to V[[(a a′) · ([t]v[ψ])]] by Lemma 5.3.1 and then we are done,

since it is easy to see that (a a′) · ([t]v[ψ]) = [t]v[ψ′].

I Case (app). We take as assumptions that E [[[t]e[ψ1]]](σ) = σ(V[[[t]v[ψ1]]])

and E [[[t′]e[ψ2]]](σ) = σ(V[[[t′]v[ψ2]]]) where t ∈ Λ(x, x′1), t
′ ∈ Λ(x, x′2) and

x′1 ∩ x′2 = ∅. Let us take the substitutions ψ1, ψ2 to be ψ|x∪x′1
and ψ|x∪x′2

respectively (these are still injective since ψ is). Carefully observing the

domains of these substitutions we see that we need to prove

E [[[t t′]e[ψ]]](σ) = σ(V[[[t t′]v[ψ]]]) = σ(V[[App([t]v[ψ1], V[[[t′]v[ψ2])]]]]).

We proceed as in the previous case by fully expanding the left-hand side to

obtain

E [[[t]e[ψ1]]](λd ∈ [[lam]]. E [[[t′]e[ψ2]]](λd′ ∈ [[lam]]. σ((i ◦ in3)〈d, d′〉)))

which from the assumptions is σ((i ◦ in3)(V[[[t]v[ψ1]]],V[[[t′]v[ψ2]]]))). �

Lemma 5.7.5 (Divergent terms). For a typeable closed expression e of type

lam and the divergent term Ω def= (fun f(x) = f(x))(()) then

e ≈ctx Ω ⇔ ∀S : lam (. E [[e]]S[[S]] = ⊥ ⇔ ∀S : lam (. 〈S, e〉↓.

where we write 〈S, e〉↓. to indicate that 〈S, e〉↓ does not hold.

Proof. e ≈ctx Ω holds iff e ≈ciu Ω, i.e. for all S of type lam (, 〈S, e〉↓
holds just in case 〈S,Ω〉↓. From the definition of the termination relation,

we have that 〈S,Ω〉↓ never holds; thus, 〈S, e〉↓.. Combining this with the

computational adequacy result (Theorem 5.4.1) concludes the proof. �

5.7.2 Correctness results

Theorem 5.7.6 (Correctness for values). The contextual equivalence classes

of closed values of type lam are in bijection with the α-equivalence classes of

λ-terms with variables in VId.

132 5. Correctness of representation

Proof. Fix any bijection12 ψ : VId ∼= A. Then given any two α-equivalent

terms t, t′, Lemma 5.7.3 tells us that [t]v[ψ] ≈ctx [t′]v[ψ]. In the reverse

direction, we need to show that any two contextually-equivalent values v,

v′ of type lam arise from α-equivalent terms t, t′ such that v = [t]v[ψ] and

v′ = [t′]v[ψ], for then we can apply the same Lemma in the other direction

to get the desired result. However, given any value v of type lam then the

typing rules tell us that it can only be of the form Var(a) for some atom a,

Lam(<<a>>v′) for some value v′ of type lam, or App(v1, v2) for some values

v1 and v2 of type lam. It is thus straightforward to see that every value of

type lam corresponds to a value [t]v[ψ]. �

Corollary 5.7.7 (Equality of denotation at type lam). Given any two λ-

terms t, t′ with variables in VId and an injective substitution ψ : VId → A

then

V[[[t]v[ψ]]] = V[[[t]v[ψ]]] ⇔ t ≡α t
′.

Proof. Follows immediately from Corollary 5.5.9 and Theorem 5.7.6. �

The previous theorem tells us something about the relation between

elements of [[lam]] and terms of the λ-calculus. What it does not however

tell us is that the v 7→ V[[v]] map is surjective onto [[lam]]↓. The following

Theorem establishes this useful ‘no junk’ property.

Theorem 5.7.8 (No junk in [[lam]]). The non-bottom elements of [[lam]] are in

bijection with the α-equivalence classes of λ-terms with variables in VId.

Proof. Pitts and Gabbay establish in previous work[20] that the elements

of the inductively-defined FM-set Λ/≡α
def= µX. A + ([A]X) + (X × X) are

in bijection with the α-equivalence classes of λ-terms with variables in A.

Since such λ-terms are in bijection with those containing variables in VId, it

suffices to establish that the lifted FM-set (Λ/≡α)⊥ is in bijection with [[lam]],

provided that the least elements of these are mapped to each other. This

may be done neatly by exhibiting an isomorphism j : F ((Λ/≡α)⊥, (Λ/≡α

)⊥) ∼= (Λ/≡α)⊥ such that the pair ((Λ/≡α)⊥, j) has the minimal invariant

property for the functor F of §5.2.1. Since such pairs are unique up to

isomorphism (by Theorem 4.5.2), we can deduce that [[lam]] is isomorphic

12If working formally inside FM-set theory, we would have to do this differently since this

construction is not finitely-supported.

5.7. Correctness of representation 133

to (Λ/≡α)⊥ so long as the least elements are correctly mapped. We must

therefore exhibit some j with j(⊥) = ⊥, j−1(⊥) = ⊥ and fix(Φ) = id (Λ/≡α)⊥ ,

where Φ def= λf ∈ (Λ/≡α)⊥ ((Λ/≡α)⊥. j ◦ F (f, f) ◦ j−1. A suitable

equivariant j is as follows:

j(⊥) def= ⊥ j(in1(a ∈ A)) def= a j(in2([a]t))
def= λa. t j(in3(t, t′))

def= t t′

where the functions ink are the usual injections into a coalesced sum. Ob-

serve that since Φn+1(⊥)(t) def= Φ(Φn(⊥))(t) then

Φn+1(⊥)(t) =



⊥ if t = ⊥;

a if t = a ∈ A;

λa′. (Φn)(⊥)((a a′) · t′) if t = λa. t′, with

a′ ∈ A \ supp(Φn(⊥), a, t′);

(Φn(⊥)(t1)) (Φn(⊥)(t2)) if t = t1 t2.

We are first going to show that Φn(⊥) has empty support for any n. Proceed

by induction on n. For the base case, Φ0(⊥)(t) def= ⊥ which has empty

support. Then under the assumption that π · (Φn(⊥)(t)) = Φn(⊥)(π · t) we

wish to know π · (Φn+1(⊥)(t)) = Φn+1(⊥)(π · t). This is straightforward

to see in all cases except where t is a λ-abstraction, say λa. t′. Then for

a′ ∈ A \ supp(Φn(⊥), a, t′) we have

π · (Φn+1(⊥)(t))

= π · λa′. Φn(⊥)((a a′) · t′) by definition

= λπ(a′). π · (Φn(⊥)((a a′) · t′)) swapping on the syntax tree

= λπ(a′). Φn(⊥)((π(a) π(a′)) · π · t′) by the induction hypothesis

= λa′′. Φn(⊥)((a′′ π(a′)) · π · t′) writing a′′ = π(a)

= Φn+1(⊥)(π · t′) since π(a′) /∈ supp(π · t′).

Given this equivariance result the previous definition may be simplified to

Φn+1(⊥)(t) =



⊥ if t = ⊥;

a if t = a ∈ A;

λa. (Φn)(⊥)(t′) if t = λa. t′;

(Φn(⊥)(t1)) (Φn(⊥)(t2)) if t = t1 t2.

We can now see by induction on n that Φn(⊥) is the identity on terms of

height at most n (where ⊥ is the only term of height zero). Therefore

fix(Φ) = id (Λ/≡α)⊥ . �

134 5. Correctness of representation

Theorem 5.7.9 (Correctness for expressions). For λ-terms t, t′ with free

variables contained in the finite set {x0, · · · , xn} ⊆ VId,

t ≡α t⇔ {x0 : name, · · · , xn : name} ` [t]e ≈ctx [t′]e : lam.

Proof. For the forwards direction we proceed by induction on the derivation

of t ≡α t
′ to show that

t ≡α t
′ ⇒ [t]e = [t′]e, (5.81)

where – = – is equality of Mini-FreshML expressions, identified up to α-

conversion of bound value identifiers.

I Case (var). The terms t and t′ must both be the same value identifier

x ∈ VId and so we are done.

I Case (lam). We have that λx. t ≡α λx
′. t′ and wish to know that

let x = fresh in Lam(<<x>>[t]e) = (5.82)

let x′ = fresh in Lam(<<x′>>[t′]e).

The ≡α judgement must have been derived by knowing that (x x′′) · t ≡α

(x′ x′′) · t′ for some x′′ ∈ A \ supp(t, t′). Therefore, Lemma 3.7.3 and the

induction hypothesis give us that (x x′′) · [t]e = (x′ x′′) · [t′]e and hence

let x′′ = fresh in Lam(<<x′′>>(x x′′) · [t]e) =

let x′′ = fresh in Lam(<<x′′>>(x′ x′′) · [t′]e).

However since x′′ does not occur in t or t′ (and therefore not in [t]e or

[t′]e) then let x′′ = fresh in Lam(<<x′′>>(x x′′) · [t]e) is in the same α-

equivalence class as let x = fresh in Lam(<<x>>[t]e). A similar argu-

ment applies for the t′ side of the equality. We thus have (5.82) as required.

I Case (app). We have that t1 t2 ≡α t′1 t
′
2 and want App([t1]e, [t2]e) =

App([t′1]e, [t′2]e). However the induction hypotheses tell us that t1 ≡α t
′
1 ⇒

[t1]e = [t′1]e and similarly for t2, t′2.

For the reverse direction of the theorem, by renaming variables we can

find a finite set x′ and terms tΛ, t′Λ ∈ Λ(x, x′) such that tΛ ≡α t and t′Λ ≡α t
′.

Applying (5.81) then yields that [tΛ]e ≈ctx [t′Λ]e : name. Choosing some

injective substitution ψ : VId→A with domain x∪x′, we can apply Lemma

5.7.4 to conclude that [tΛ]v[ψ] ≈ctx [t′Λ]v[ψ] : lam. Finally, we apply Lemma

5.7.3 to obtain t ≡α tΛ ≡α t
′
Λ ≡α t

′. �

5.7. Correctness of representation 135

Theorem 5.7.10 (Form of expressions). For a closed Mini-FreshML expres-

sion e of type lam and a divergent term Ω, then either e ≈ctx Ω or there exists

a closed value v of type lam with

e ≈ctx let x1 = fresh in · · · let xn = fresh in v,

for value identifiers {x1, . . . , xn}.

Proof. Using Lemma 5.7.5 we see that if ` e ≈ctx Ω does not hold, then

there exists some frame stack S such that 〈S, e〉↓. Therefore by Lemma 3.4.3

we know that 〈[], e〉↓. We can now apply the forwards direction of Theorem

3.4.6 to deduce that there exists some closed value v′ of type lam and finite

sets of atoms a′ ⊇ a ⊇ atms(e) such that: a, e ⇓ v′, a′ with atms(v′) ⊆ a′ and

〈[], v′〉↓. Pick a finite set X ⊆ VId with cardinality |a′ \ a| and let ψ be a

bijection X ∼= (a′ \ a). Then we can write v′ as v[ψ], where v is that value

formed from v′ by replacing each atom a ∈ a′ \ a which occurs in v′ with a

value identifier ψ−1(a). Enumerating X as {x1, . . . , xn} we now show that

e ≈ciu let x1 = fresh in · · · let xn = fresh in v,

so we can conclude by Theorem 5.5.5. Call the right-hand side of this

conjectured equivalence e′.

In the forwards direction, assume 〈S, e〉↓. Theorem 3.4.6 then tells us

that there exist sets of atoms a′1 ⊇ a1 ⊇ atms(S, e) such that: a1, e ⇓ v′1, a′1
with atms(v′1) ⊆ a′1 and 〈S, v′1〉 ↓. Then by Lemma 3.3.3 there exists a

bijection13 π : (a′1 \ a1) ∼= (a′ \ a) with π · v′1 = v′. Since π−1 fixes atms(e)

pointwise then 〈S, v[π−1 · ψ]〉↓, where π−1 · ψ maps each x ∈ dom(ψ) to

π−1(ψ(x)). It now follows that

e ≺ciu let x1 = π−1(ψ(x1)) in · · · let xn = π−1(ψ(xn)) in v.

However for each 1 6 i 6 n, a = π−1(ψ(xi)) ∈ (a′1 \ a1) and therefore

a /∈ atms(S). We therefore have e ≺ciu e
′.

In the reverse direction, assume 〈S, e′〉↓. It suffices to show 〈S, v[ψ]〉↓,
since then we can conclude by Theorem 3.4.6 (for we already have that

a, e⇓v[ψ], a′ from above). Pick a finite set of atoms a2 ⊇ supp(S, e) together

with n distinct atoms {a1, . . . , an}; let a′2
def= a2∪{a1, . . . , an}. Fix a bijection

13Thought of as a permutation, which fixes all atoms not in its domain.

136 5. Correctness of representation

π : (a′ \ a) ∼= (a′2 \ a2) and observe that 〈S, e′〉↓ implies 〈S, v[π · ψ]〉↓ (since

each atom in a′2 \ a2 is not in the support of S). Since π fixes all atoms in v,

we know that 〈S, π · (v[ψ])〉↓; it follows by the equivariance property of the

termination relation (and indeed that π−1 fixes the support of S pointwise)

that 〈S, v[ψ]〉↓ as required. �

This final theorem concludes our work on the denotational semantics of

Mini-FreshML. We have shown how a novel monadic semantics can provide

a straightforward setting for modelling dynamic allocation. Using the se-

mantics, we have shown how object language terms may be translated into

Mini-FreshML expressions and proved how such expressions correspond to

the α-equivalence classes of the original terms. Such formal proof, long

though it may be, is technically satisfying and provides good evidence that

our syntax-manipulating paradigm is sound.

In the next chapter then, we shall exchange the art of mathematics for

the art of programming. We will discuss the innards of the Fresh O’Caml

compiler together with some of the past and future issues surrounding the

implementation.

6 Implementation

‘Theory attracts practice as the

magnet attracts iron.’ —Gauss

IN THIS CHAPTER we describe the implementation of the freshness features

in Fresh O’Caml. The text here corresponds to the current version of the

implementation[60, 62], but since this is still in its infancy we also discuss

technologies which are not yet incorporated into that system.

6.1 Library, or bespoke system?

At the start of Fresh O’Caml’s development, it was necessary to decide how

the new features would be integrated into the existing language system. In

such a scenario there are two basic options1:

• implementation as a standard library module, leaving the main com-

piler and runtime systems unchanged;

• wholesale extension of the compiler and runtime systems themselves.

The first of these corresponds to an embedding of the freshness features

within the target language whilst the second corresponds to a fundamental

extension of the language. Fresh O’Caml falls into the second category: a

decision which was reached after consideration of the following issues.

I The necessity of swapping. Theoretically speaking, Fresh O’Caml code

could be source-to-source translated into standard O’Caml code whose only

non-standard dependency is that of a swapping operation on names. (An

example of how this can be done for FreshML may be found in previous

work[63, §3] by the author and others.) The provision for this in the

language runtime system is thus essential. Some ML systems (O’Caml and

Moscow ML, for example) permit the inspection and modification of the ML

1Miller[33, §1] presents a similar pair of options.

137

138 6. Library, or bespoke system?

heap at runtime from within an ML program by using unsafe primitives and

it has been shown that this can be used to implement a swapping ‘primitive’

without too much difficulty2. However, the solution is somewhat clumsy

and prohibits the use of certain optimisations as we identify in Efficiency

below.

I Syntactic sugar. If implementing freshness as a library it is highly desir-

able to have some pre-processing of language source text in order to provide

idioms such as pattern-matching on abstraction values. These idioms in

themselves are one of the distinguishing features of our approach: syntax-

manipulating programs may be written concisely and elegantly using them.

The source-to-source translations which one requires in order to expand out

such constructs could possibly be implemented in a pre-processor such as

camlp4[13]. However, past experience implementing (very) early versions

of the FreshML system[59] showed that such transformations can be far

from straightforward. This is particularly the case when dealing with the

expansion of nested abstraction pattern-matches. Additionally, an upshot

of such transformations can be the undue obfuscation of compiler error

messages.

I Efficiency. In order to implement optimisations such the scheme of

delayed permutations which will be introduced in §7.1.1, it is necessary to

make fundamental changes to the structure of values on the heap. This

obviously necessitates modification of the existing compiler and runtime

system, rather than just adding a library module.

I The moral stance. Morally speaking, we feel that constructs for declaring

and manipulating syntax modulo α-equivalence are so fundamental that

they ought to be directly incorporated into the target language. Why should

abstraction types be on any different a level from the other type construc-

tions which we regularly use when declaring recursive datatypes?

I The learning curve. Wholesale extension of an existing language and

compiler requires a significant amount of work, not just in understanding

the semantics of the programming language but also in familiarisation with

voluminous quantities of compiler code. In the case of the initial versions of

Fresh O’Caml the lack of freshness inference meant that most of the modi-

fications to the existing compiler code were relatively straightforward. The

2Such a solution was first implemented by Claudio Russo in Moscow ML (private

communication).

6.2. System overview 139

freshness-specific runtime code is fairly orthogonal to the rest of the runtime

system and thus could be inserted into the system without undue difficulty.

However as we shall see in this and the next chapter, the implementation is

earmarked to become more refined with a view to improving efficiency. This

will certainly involve more far-reaching changes affecting large volumes of

compiler and runtime system code.

I Accessibility. The library solution has the great advantage that freshness

features can be incorporated into some existing language on a relatively

short timescale (even if only as a quick inefficient hack). It is therefore

an attractive proposition for demonstrating the benefits of our approach to

users of these languages. Such projects would hopefully increase general

awareness and adoption of the new constructs.

6.2 System overview

The patch to Objective Caml is broadly composed of the following parts.

1. Modifications to the front-end of the compiler (lexer, parser and type-

checker) to accommodate the new constructs. Whilst there are mul-

titudinous changes, most are relatively minor. The major exception is

the code which compiles abstraction pattern-matches, whose underly-

ing algorithm is explained in §6.5.

2. A new module in the runtime system (sources byterun/freshness.c

and byterun/freshness.h) implementing low-level functionality.

3. Minor modifications throughout the runtime system and standard li-

brary to cope with the addition of new varieties of heap blocks (to

represent abstraction values, for example) and primitive operations

(for example atom-swapping).

The majority of the extensions are therefore in the runtime system which

is implemented in C[26]; the remainder are written in O’Caml. The system

remains a bootstrapping compiler and emits both bytecode and native code.

For readers unfamiliar with the internals of the O’Caml system, we must

say a few words about how values are stored in memory during the ex-

ecution of an O’Caml program. Values are partitioned into two varieties:

those which are allocated on the heap (boxed) and those which are stored

as immediate (unboxed) integer values.

140 6. Creation of fresh names

Any particular allocated value will consist of one or more heap blocks.

Each block has an integer tag which stores information about what is inside.

For example, tag number zero specifies a tuple. Blocks may be linked

together via pointers and may be aliased (shared) in order to save memory.

They are garbage-collected when they are no longer referenced.

Immediate values are used to store values such as integers. On a ma-

chine whose native processor integer width is n bits, an O’Caml immediate

value will have n− 1 bits available for actual data—the final bit being taken

up with the flag which specifies whether or not the value is boxed.

6.3 Creation of fresh names

An object language name is represented by a block with tag Atom tag. Such

a block contains a single extra field containing an atom identifier, which

is a 31-bit integer produced when the atom is created (corresponding to a

fresh expression, for example). The integers are generated using a pseudo-

random number generator3 whose parameters are chosen to give a very low

risk of collision. The reason for using such a linear congruential generator

rather than just an incrementing counter is to attempt to ensure the unique-

ness of identifiers across multiple instances of the O’Caml runtime, for there

is currently no specific support for marshalling atoms. Future versions will

likely use a simple counter and be equipped with such marshalling support.

So currently, a heap block representing an object language name looks like4:

Atom tag a

In order to minimise the risk of collisions (in the current implementation) or

‘running out of atoms’ (in future versions), it is highly desirable that atom

identifiers should have a range5 of 63 bits. In order to approximate this, on

a 32-bit machine the heap layout could be changed to:

Atom tag a1 a2

3Thanks to Keith Wansbrough for suggesting this.
4In case the reader is wondering, the tag field is indeed drawn disproportionately large.
5In the current implementation they are still restricted to 31 bits.

6.4. Creation of abstraction values 141

where a1 (resp. a2) is the most (resp. least) significant part of the atom

identifier, or vice-versa. These fields may accommodate at most 31 bits

each, so we obtain a 62-bit range. On a 64-bit machine, heap block fields

are 64 bits wide by default so no change is needed. This will allow a 63-bit

range for the atom identifiers.

6.4 Creation of abstraction values

As we noted in Chapter 2, creation of abstraction values is fast whereas de-

construction is slower. In the implementation, the creation of an abstraction

value <<u>>v involves just two steps:

1. the allocation of a heap block with a distinguished tag (Abst tag);

2. the placing of u and v inside as if for a pair.

Note that either of u and v may be immediate values, or pointers to boxed

values. An abstraction heap block therefore looks like this:

Abst tag u v

6.5 Pattern-matching on abstraction values

It is well-known that the efficient compilation of pattern-matching[68] in

functional languages is a non-trivial problem. In Fresh O’Caml we have

extended the compiler to accommodate matches against abstraction values

as described in §2.2.3. This poses a significant implementation hurdle—

especially since the existing code to compile matches in O’Caml is highly

optimised[27].

Early in the development of Fresh O’Caml, efficiency was completely put

aside in order to get a working system as fast as possible. As a consequence,

a temporary pattern-matching scheme was put in place which required only

minimal modifications to the compiler code. We shall review this first and

then describe more efficient implementation strategies.

Suppose we have a function which takes an arbitrary O’Caml value and

determines whether there are any abstraction values present within it. Then,

whenever compiling a match we emit code to intercept the value to be

142 6. Pattern-matching on abstraction values

matched against and pass it through this function. If the value may possibly

contain abstractions, then we completely freshen the value such that every

abstraction value therein contains fresh atoms corresponding to those in

binding position. The match may then be correctly compiled by recursively

changing the abstraction patterns to pair patterns and passing the rewritten

match to the normal pattern-match compilation code.

Now this scheme is obviously quite inefficient but it suffices for a first

attempt. To improve upon this requires more substantial compiler modifi-

cations. When considering such modifications, we have aimed to minimise

the amount of modifications to the central O’Caml pattern-matching code

itself. To this end, current versions of Fresh O’Caml use what is effectively a

source-to-source translation performed just before matches are compiled. It

operates as follows.

Define a function pat 7→ [[pat]] which rewrites a Fresh O’Caml pattern pat

such that each abstraction pattern <<p1>>p2 is replaced by the corresponding

pair pattern (p1, p2). Similarly, define a function pat 7→ [[pat]]w which

rewrites a pattern pat such that every pattern variable within it is replaced

by a wildcard. Then we transform a (top-level) pattern match of the form

<<pat>>pat ′ -> exp

into the following code fragment6, for a fresh pattern variable x:

[[<<pat>>pat ′]]w as x ->

match freshen x with [[<<pat>>pat ′]] -> exp.

The function freshen performs the ‘complete freshening’ operation on a

value as described above. We must note that this operation is potentially

very expensive—especially if a term is subjected to repeated matches down

through its structure, where O(n2) time complexity may occur as a result of

the swapping process. The scheme of delayed permutations which we shall

examine in both the next section and in full detail in §7.1.1 will, however,

alleviate this.

The obvious thing to note about our current scheme is that it is some-

what eager, in the sense that a single abstraction pattern-match causes the

6The astute reader will note that the transformation is slightly evil—the resulting code

does indeed only work successfully because the heap layout of abstraction values coincides

(modulo the tag) with that for pairs.

6.6. Implementation of swapping 143

whole of the corresponding abstraction body to be freshened. A more in-

cremental approach could be considered, whereby only the parts of the

value being matched against using abstraction patterns get freshened. This

saves the computational cost of the freshen function. For example, for atoms

a, b then we could consider matching the value <<a>>(a, <>b) against

the pattern <<p>>(q, r). In the current scheme, the innermost abstraction

(bound to r) would be fully freshened—even though to actually look inside

it will require another abstraction pattern-match. In an incremental scheme,

this innermost abstraction would not be freshened (or even copied) in the

first instance.

An incremental scheme requires significantly more implementation ef-

fort, either via a complex source-to-source translation or via serious mod-

ification of the existing O’Caml pattern-matching compiler code. Future

work should conduct some experiments on large-scale systems to determine

whether the potential increases in efficiency offered by the incremental

approach are worth the extra complexity inside the compiler.

6.6 Implementation of swapping

The crux of our implementation is the runtime swapping of atoms through-

out arbitrary values. Even excepting use of the explicit atom-swapping con-

struct swap e and e′ in e′′, there will likely be a very high number of trans-

positions required during the execution of the average syntax-manipulating

program written in Fresh O’Caml. The majority (or even all) of these will

arise from the deconstruction of abstraction values.

We can subdivide the general problem of efficient implementation of

swapping into two separate, but related problems:

• how do we know when we must perform a swap; and

• if a swap is essential, how do we make that operation fast?

The following two sections consider these issues in turn.

6.6.1 When to swap?

It is more difficult than it might at first seem to give a good answer to the

question of when to swap, especially when that answer must be reflected in

compiler code! Let us just consider the case of abstraction pattern-matches,

144 6. Implementation of swapping

which is the main area of concern. Here are some partial code fragments

which exhibit some possible situations, for a data constructor C and a func-

tion F. In fragments 1 through 3, no freshening needs to be performed on

the value arriving to be matched. In fragments 4 and 5, freshening needs to

be performed but at different times during evaluation.

1. The right-hand side of an abstraction match does not contain occur-

rences of the pattern variables.

let f1 t = match t with

... | C (<<a>>x) -> true | ...

Such situations can be identified by a simple static analysis and the

compiler can omit the emission of freshening code.

2. An abstraction pattern contains a wildcard.

let f2 t = match t with

... | C (<<a>>_) -> ... | ...

In this situation, we may still have to choose as many fresh atoms

as there are atoms in the algebraic support of the value in binding

position (here corresponding to the pattern variable a), even if we can

avoid swapping. There are two possible cases:

• A ‘binding position only’ pattern of the form <<a>> . Here, the

programmer does not have access to the body so we will never

need to perform any transpositions on that part of the incoming

value. However, since a could potentially be used by the pro-

grammer7, it may be necessary to pick fresh atoms and perform

some swaps in order to freshen the binding part of the incoming

value.

• A ‘body position only’ pattern of the form << >>x. In this case,

the wildcard might as well not be there as the programmer may

still make use of x in a situation where it needs freshening. Thus

such patterns can be treated by picking a fresh pattern variable

for the binding position and proceeding as normal.

7This can be used to obtain the same effect as a fresh expression.

6.6. Implementation of swapping 145

3. The right-hand side of an abstraction match is such that no freshening

of the incoming value needs to occur. For simplicity we consider a to

be of bindable type.

let f3 t = match t with

... | C (<<a>>x) -> (<<a>>x, <<a>>x) | ...

Informally speaking, the reason why we do not need to freshen in this

specific case is because the result of the computation on the right-hand

side of the match (the pairing operation) is well-defined no matter

which atom is bound to a. Formally speaking, we do not need to

freshen because the atom bound to a will never occur in the support

of the denotation of the value obtained by evaluating the right-hand

side of the match. This means that we do not have to allocate any

fresh atoms upon the match—thus reducing turnover of atoms.

We approximate8 such a semantic judgement by a freshness judgement

a B (<<a>>x, <<a>>x), where the B is read as ‘fresh for’. In the

FreshML-2000 design[49], such judgements were an integral part of

the static type system as it was thought that they were needed in order

to ensure correctness properties such as those proved in Chapter 5.

However, this turns out not to be the case.

Section §6.8 examines freshness inference in detail. For now let us

observe that it is a technology not currently exploited inside the Fresh

O’Caml compiler but which could be potentially useful for this optimi-

sation.

4. An abstraction match whose incoming value must always be fresh-

ened, but not necessarily straight away.

let f4 t = match t with

... | C (<<a>>x) -> F x | ...

Here, we may not be able to guarantee that F never uses its argument.

However, the act of just invoking the function F does not require access

to the innards of x. Therefore, it would suffice to mark the value

bound to x as having a pending permutation of atoms attached to

8We are running into problems of undecidability here, as we will discuss shortly.

146 6. Implementation of swapping

it. When (and if) F uses the value, the permutation must actually

be applied through the value as far as necessary to ensure all used

parts are freshened.

Situations like this are very common and theory has been developed—

starting with an idea by Mark Shields (private communication)—to

reason about such pending permutations. We shall examine this fur-

ther in §7.1.1.

5. An abstraction match whose incoming value requires immediate fresh-

ening: there is no option.

let f5 t = match t with

... | C (<<a>>a’) -> a = a’ | ...

This code fragment could be rewritten using the O’Caml when quali-

fication: another simple example of when the ‘immediate freshening’

situation could occur.

let f5 t = match t with

... | C (<<a>>a’) when a = a’ -> true | ...

Apart from abstraction pattern-matches, the only other construct whose

evaluation involves swapping of atoms is swap e and e′ in e′′. In this case,

the permutation may be able to be delayed depending on the surrounding

context. Again, an optimisation can be made if the value to which e′′

evaluates does not in fact contain any atoms.

6.6.2 How to swap?

Having discussed when a swapping operation needs to be performed, we

now turn to the issue of actually performing such an operation. Here,

we assume the absence of pending permutations: see §7.1.1 for evaluation

strategies in that setting.

In general, we will have two lists of atoms S = {a1, . . . , an}, S′ =

{b1, . . . , bn} of equal length whose elements are to be exchanged simulta-

neously (in the sense that for each 1 6 k 6 n, ak is to be exchanged with bk)

throughout some value v. At runtime, each atom will correspond to a heap

block (viz. §6.3) containing an atom identifier. We thus traverse through

6.6. Implementation of swapping 147

the value v, copying the structure as we go9, looking out for atom blocks

whose identifiers which correspond to any in S or S′. Upon finding a match

(say the atom ak), we change the particular atom pointer in v to point at

the new atom (in this case bk). Note that we are only changing pointers to

atoms, not performing in-place rewriting of atom identifiers.

A possible optimisation is to observe that in many cases, one of the

lists (say S′) may in fact solely consist of atoms which are fresh for the

current environment. (This usually occurs as a result of abstraction pattern-

matching where it has been determined that fresh atoms must be allocated.)

In this case the swapping is actually only a ‘fresh renaming’. Thus, upon

encountering an atom in v we only need to look through the other list (in

this case S) to determine if a swap must be performed upon a particular

atom.

It may also be worth considering methods of simplifying lists of atom-

swappings into smaller ones—although it is not clear whether this will give

any significant improvement in efficiency. Future benchmarking will be

required on this front.

So everything about doing swapping sounds fairly straightforward so far.

Unfortunately, there is a thorn: (immutable) values on the O’Caml heap

may be cyclic. Here is a fragment of an interactive session as a somewhat

contrived, but illuminating example.

let x = fresh;;

val x : ’a name = name_0

let rec xs = x :: xs;;

val xs : ’a name list =

[name_0; name_0; name_0; name_0; name_0; name_0; name_0;

name_0; name_0; ...]

The heap structure of the value xs would be as shown in the diagram

overleaf, where a is the atom identifier bound to the value identifier x. (The

tag 1 corresponds to the list cons data constructor.)

9Potentially highly inefficient: we say some words about this in §6.7.

148 6. Implementation of swapping

1

?

?

Atom tag a

In order to cope with atom-swapping throughout such values, we could

attempt to use a hash table. Upon encountering a block as we traverse the

heap, we check to see if its address k exists as a key in the hash table. If

it does not, then it is a previously-unseen block; we perform the swapping

operation upon it and record the address of the resulting value10 v in the

hash table, k 7→ v. Conversely, if the address k was found in the hash table

then we just use the corresponding value v in the hash table as the new

value (without delving any deeper into the block k). Note that it is essential

to use a data structure with O(1) lookup, such as a hashtable, to prevent

massive performance degredation.

Unfortunately, the actual C implementation of this algorithm is far from

straightforward. This is because during the process of swapping we are

very likely to allocate new values on the O’Caml heap. Each such allocation

triggers a minor garbage collection, which may cause heap blocks to be

moved. This is problematic since we are attempting to key a hashtable on

the addresses of such blocks. Even if we can determine which blocks have

been moved, then we need to re-shuffle the hash table as the particular

invariant mapping keys to entry positions in the table will have been broken.

Instead of performing such operations (which are not only costly but

also tricky to implement), we adopt an alternative multi-pass solution. In

the first pass, we scan the value under question and determine precisely

which heap allocations will need to be performed. This is the only stage

which actually requires the hash table in order to prevent looping. After the

first stage, we have an array which not only gives the sizes of the allocations

required but also indicates which blocks should be shared. In the second

10One would hope that this address would be equal to that of k if there are in fact no

atoms occurring inside the block k.

6.7. Preservation of sharing 149

stage, we perform the allocations. Then in the third stage we traverse the

value in exactly the same order as the first stage, at the same time iterating

through the array to determine what to do with the next block which we

encounter. At this point, we can perform the actual permutation—or if

the block is shared with one encountered previously then we just use the

previously-computed permutation of that block.

This procedure ensures that the swapping algorithm does not loop on

cyclic values. Here is a short continuation of the previous session.

let y = fresh;;

val y : ’a name = name_0

match (swap x and y in xs) with b::bs -> (b = x, b = y);;

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

- : bool * bool = (false, true)

6.7 Preservation of sharing

An important concept in the implementation of functional languages is that

of sharing: the re-use, possibly multiple times, of existing heap blocks to

prevent unnecessary duplication. For example, the expression

let a = fresh in let x = <<a>>a in (x, x)

will likely yield the following heap structure:

0

�

�
�

�
��	

Abst tag

�

�
�

�
��	

Atom tag a1

where a1 is the atom identifier bound to the value identifier a. Note how we

only use three instead of seven heap blocks as one might at first imagine.

150 6. Freshness inference

When manipulating the heap, it is desirable to preserve as much of

this sharing as possible. Therefore when traversing a value in order to

perform transpositions we should not copy unnecessarily. Unfortunately,

when performing such a traversal we may have to un-share blocks (via

copying) in order to produce a correct result. For example, if the above value

is to be freshened completely then we must make sure that two atoms are

allocated (assuming that the existing identifier a1 is not sufficiently fresh—if

it were to be, we must still allocate another). Then, each component of the

pair value must point to a different abstraction block like so:

0 �
�

�
�

�
��+

J
J

J
JĴ

Abst tag

�

�
�

�
��	

Atom tag a2

Abst tag

�

�
�

�
��	

Atom tag a3

where a2 and a3 are fresh atom identifiers. Note how despite the freshening

some sharing has still been preserved. However at the time of writing the

Fresh O’Caml system does not implement such a scheme: it is a matter for

later implementation work. With delayed permutations of course, necessary

un-sharing will only happen at the last minute—thus helping further with

memory efficiency.

6.8 Freshness inference

6.8.1 The motivation for a static analysis

In §6.6.1 we saw an example of a freshness judgement; we postulated that

this could be exploited in order to perform an optimisation. Such fresh-

ness judgements can be produced using a certain static analysis known

as freshness inference which is performed in parallel with type-checking.

In this section we shall examine this analysis in detail, mostly recalling

earlier work[49] but adding some extra discussion and insights gained from

6.8. Freshness inference 151

implementing a system11 which made use of the analysis. When designing

that system, it was thought that freshness inference was necessary in order

to obtain correctness properties such as those in Chapter 5. It was only the

work of Cardelli et al.[9] which caused the first doubts to be raised about

it—leading to its subsequent deprecation.

As we noted in Chapter 1, we often use the Barendregt variable conven-

tion to reason about programs operating on α-equivalence classes of object

language syntax: we simply choose ‘suitably fresh’ names at runtime when

necessary. Informally speaking, the result of such a computation appears

to be independent of which particular bound names have been chosen just

because the denotation of the final value does not include those names in its

support. When computing in Fresh O’Caml, these ‘bound names’ are atoms

in binding position and so we should be interested in whether results of

computations include certain atoms in the denotation of their supports. If

the denotation of a result contains an atom in its support which has been

dynamically generated at runtime (say by evaluation of fresh), then that

effect will be visible to any surrounding context. If the atom is not in the

support of the denotation of the result, then no side-effects arising from the

generation of the atom will be visible.

The aim of freshness inference is to build up a sound approximation to

this notion of ‘not in the support of’ by performing a static analysis which

yields a relation between value identifiers and expressions. A freshness

judgement such as x B e (read ‘x fresh for e’) is intended to mean that e

will always evaluate to a value v such that a /∈ supp(V[[v]]), where a is the

atom bound to the value identifier x at runtime and V[[v]] is the denotation

of the value v.

The upshot of this analysis is that those program phrases which have

observable effects of creating fresh atoms may be rejected at compile-time,

thus making the dynamic allocation of atoms referentially transparent. (A

convenient upshot of this is that reasoning about programs becomes more

straightforward due to the lack of these side-effects.) For example, take

once again the untyped λ-calculus with the corresponding Mini-FreshML

datatype declaration from §5.7 and consider the expressions

let x = fresh in Lam(<<x>>x) and let x = fresh in Var(x).

11The FreshML-2000 interpretive system.

152 6. Freshness inference

The result of evaluating the first expression is a value <<a>>a (for some a ∈
A) which clearly corresponds to the closed object language term λx. x. The

dynamic allocation of the atom a has no visible external effect, as no matter

which a is chosen then the same value is obtained. However, the second

expression simply evaluates to the representation of ‘a fresh object language

variable’: which particular atom has been allocated may be determined from

the outside. Writing ¬B to mean ‘not fresh for’, the procedure of freshness

inference would yield the judgements that

xB let x = fresh in Lam(<<x>>x)

x ¬B let x = fresh in Var(x)

which would cause the type-checker to reject the second expression.

Another good example of the lack of referential transparency in Fresh

O’Caml is the function bound vars of §2.2.3, whose FreshML-2000 equiva-

lent would have been rejected at compile time.

6.8.2 Static semantics with freshness inference

How is freshness inference actually performed? From a ‘logical’ rather than

an ‘inference’ point of view, we can express the algorithm as a set of axioms

and rules as illustrated in Figure 6.1. In that Figure, we see that the normal

system of typing judgements for a language similar to Mini-FreshML has

been extended with freshness judgements. In the new system, the standard

typing relation ` on 3-tuples (Γ, e, τ) is transformed to another on 5-tuples

(Γ,∇, e, τ,X) where ∇ is a freshness context and X is a finite set of value

identifiers. Freshness contexts are finite binary relations on value identifiers,

typical element x B x′. The intention here is to carry along with us some

information about the freshness of one value identifier relative to another

in order that we can use it at the top of the rule trees (at axiom (vid) in

particular). The ‘ ’ symbol corresponds to a ‘don’t care’.

Before identifying the other notation used in the rules, note that the

first component of each member of a freshness context (here x) must be of

type name. For otherwise it makes no sense to consider whether the atom

assigned to it at runtime may occur in the support of the denotation of the

value assigned to x′. Furthermore, if we have xB x′ contained within some

freshness context ∇ then we may well be interested in whether x′ B x.

This of course only makes sense if x′ is of type name—but this is perfectly

6.8. Freshness inference 153

vid
Γ;∇ ` x : τ B ∇(x)

x ∈ dom(Γ) and τ = Γ(x)

con
Γ;∇ ` e : σk B X

Γ;∇ ` Ck(e) : δ B X
pair

Γ;∇ ` e : τ B X Γ;∇ ` e′ : τ ′ B X

Γ;∇ ` (e, e′) : τ × τ ′ B X

abst
Γ;∇ ` x : nameB Γ;∇ ` e : τ B X

Γ;∇ ` <<x>>e : <<name>>τ B X ∪ {x}

swap
Γ;∇ ` e1 : nameB X Γ;∇ ` e2 : nameB X Γ;∇ ` e3 : τ B X

Γ;∇ ` swap e1, e2 in e3 : τ B X

fun

Γ, f : τ → τ ′, x : τ ;∇ ` e : τ ′ B
for all free variables v of e, v 6= f ∧ v 6= x⇒ Γ;∇ ` v : B X

Γ;∇ ` fun f(x) = e : τ → τ ′ B X

app
Γ;∇ ` e : τ ′→ τ B X Γ;∇ ` e′ : τ ′ B X

Γ;∇ ` e e′ : τ B X

let
Γ;∇ ` e : τ ′ B X ′ Γ, x : τ ′;∇, xBΓ X

′ ` e′ : τ B X

Γ;∇ ` let x = e in e′ : τ B X \ {x}

let-fresh
Γ, x : name;∇, xB Γ ` e : τ B X

Γ;∇ ` let x = fresh in e : τ B X \ {x}

let-pair

Γ;∇ ` e : τ1 × τ2 B X ′

Γ, x : τ1, x′ : τ2;∇, xBΓ X
′, x′ BΓ X

′ ` e′ : τ B X

Γ;∇ ` let (x, x′) = e in e′ : τ B X \ {x, x′}

let-abst

Γ;∇ ` e : <<name>>τ ′ B X ′

Γ, x : name, x′ : τ ′;∇, xB Γ, x′ BΓ X
′ ` e′ : τ B X

Γ;∇ ` let <<x>>x′ = e in e′ : τ B X \ {x, x′}

match

Γ;∇ ` e : δ B X ′

for all 1 ≤ k ≤ K, Γ, xk : σk;∇, xk BΓ X
′ ` ek : τ B X

Γ;∇ ` match e with · · · | Ck(xk) -> ek | · · · : τ B X \ {x1, . . . , xK}

Figure 6.1: Static semantics with freshness inference.

possible. Therefore, we must ensure that the freshness contexts are always

‘symmetrised’ after they are extended in order to expediate lookups. To do

this we employ the following notation, which is used in the Figure.

• Given a finite set of value identifiers X we write ∇, x BΓ X (where

the identifier x of type name occurs neither in X nor ∇) to indicate

that freshness context judging x B y for each y ∈ X, y B x for each

154 6. Freshness inference

y ∈ X such that Γ(y) = name and acting as ∇ otherwise.

• For clarity we write ∇, xB Γ to mean ∇, xBΓ dom(Γ).

• In rule (vid), we use the notation ∇(x) to indicate the finite set of

value identifiers {x′ | (x, x′) ∈ ∇}.

Note how we have to incorporate let x = fresh in e as a single bind-

ing construct rather than just providing a fresh expression as in Mini-

FreshML. The reason for this is because it is necessary to obtain the exact

value identifier which has been declared fresh in order that freshness judge-

ments relating to that identifier may be produced. Similarly, we must insist

that abstraction expressions must be of the form <<x>>e rather than <<e>>e′.

Having such constraints imposed on the syntax of the language is rather

a nuisance. However in the old FreshML systems this was not so much

of a problem, for the ‘declaration/expression’ split present in the Standard

ML language[36] (and not reflected in Mini-FreshML) fits quite well with

freshness inference. In this setting, the fresh construct becomes a dec-

laration rather than an expression. Such declarations then elaborate to an

environment paired with a set of identifiers which should be treated as fresh

throughout the scope of the declaration.

Let us now run through a few of the rules to see the logic behind them.

For value identifiers, we simply use the current freshness context to deter-

mine which other identifiers are fresh for the one in question. Constructed

values are similarly straightforward. However, pair values are more in-

teresting and indeed better understood from an ‘inference’ point of view.

Thinking in this way, we can re-jig the rules somewhat to better express

how a freshness inference algorithm would work—just as we could when

describing a traditional type system. For example, we could rewrite the rule

for pairs as follows:

pair
Γ;∇ ` e : τ B X1 Γ;∇ ` e′ : τ ′ B X2

Γ;∇ ` (e, e′) : τ × τ ′ B X1 ∩X2

This rule tells us that in order to deduce what is fresh for a pair (e, e′), we

calculate what is fresh for each component and then take the intersection

of the two. This gives the maximal set of value identifiers fresh for all sub-

expressions (this can be thought of as being analogous to the concept of

‘most general unifier’).

6.8. Freshness inference 155

Such an algorithm inherently provides relatively coarse-grained fresh-

ness information, which could possibly be alleviated by using ‘restricted

types’ τ B X throughout the typing process. Recent work by Schöpp and

Stark[56] presents an intriguing type system which makes use of such types

with inbuilt freshness information, which they call ‘freefrom types’. This

(dependently-typed) system enables them to express abstract syntax both

in ‘FM’ style as used in this thesis and in the style of higher-order abstract

syntax.

When dealing with an abstraction expression, we simply type-check the

body and then deem the identifier in binding position (call it x) to be fresh

for the whole expression e. This corresponds to the evaluation strategy: at

runtime, this identifier will correspond to a fresh atom a which occurs in

binding position inside an abstraction value (call it <<a>>v) and therefore

never occurs in the support of its denotation.

Finally, let us examine the rule for recursive functions. As one might

expect, the decision of ‘not in the support of’ is undecidable at function types

since it relies on extensional equality of functions (recall that a function f

does not contain an atom a in its support just when for each x ∈ dom(f),

(a a′) · (f(x)) = f((a a′) · x) for some/any fresh atom a′). Therefore when

performing freshness inference we need to produce a sound approximation

in order to get a decidable static analysis. Unfortunately, as noted by Pitts

and Gabbay[49], freshness is not a logical relation: just because an atom

is fresh for a particular value v and also fresh for the result f(v) does not

mean that it is fresh for the function. This is due to the fact that functions

can contain concealed atoms within their support. For example consider the

function fun f(x) = <<a>>x, where a is some value identifier mapping to

an atom a. Whilst a is always fresh for the result of the function, it is not

fresh for the function itself.

So in the procedure of freshness inference, we simply judge that if an

identifier is fresh for all of the function’s free identifiers then it is fresh for

the function itself. This is a sound, albeit over-conservative, approximation

which we have to live with.

The difficulty with this particular approximation is that it renders many

apparently well-typed programs untypeable. (Indeed, many programs that

really do satisfy the necessary conditions are not passed by the inference

algorithm.) A good example is provided by the following function which we

156 6. Freshness inference

saw in Chapter 2. It calculates the free variables of a PLC term.

let rec free_vars t =

match t with

Tvar x -> [x]

| Tlam (ty, <<x>>t’) -> remove x (free_vars t’)

| Tgen (<<a>>t’) -> free_vars t’

| Tapp (t1, t2) -> (free_vars t1) @ (free_vars t2)

| Tspec (t’, ty) -> free_vars t’;;

Due to the semantics of remove, any atom assigned to the pattern variable x

inside the Tlam clause will always be fresh for the right-hand side of the

match. Unfortunately, the freshness inference algorithm cannot deduce

this—-which would mean that the FreshML-2000 version of this function

would be rejected. Intuitively, we can see that the function will be thrown

out because it requires evaluation to determine that x is never in the support

of remove x (free vars t’). To get around this problem, one can conceal

the atom generated by the pattern-match on Tlam inside an abstraction, as

follows.

let rec free_vars t =

match t with

Tvar x -> [x]

| Tlam (ty, <<x>>t’) -> remove (<<x>>(free_vars t’))

| Tgen (<<a>>t’) -> free_vars t’

| Tapp (t1, t2) -> (free_vars t1) @ (free_vars t2)

| Tspec (t’, ty) -> free_vars t’;;

This of course necessitates the refactoring of the remove function to have

type <<’a>>(’a list) -> ’a list. How grotesque.

6.8.3 Purity analysis

In order to produce anything near a sensible approximation to the notion

of ‘not in the support of’, the freshness inference algorithm must proceed

not only on the structure of expressions but also on the structure of inferred

types as well12. As an example consider the following function, defined for

12This causes problems when polymorphic types are present in the language, as they can

inhibit the inference of any purity information at all.

6.8. Freshness inference 157

some arbitrary expression e of type unit× unit.

let f p = match p with <<a>>x -> e.

Due to the recursion-theoretic problems which we described in the previ-

ous section, there is no way that a plain freshness inference algorithm can

deduce that the atom bound to a is always fresh for e. The idea of purity

checking is to make deductions of the form

no atoms can ever occur in a value of type unit× unit, so I know

that xB e for each identifier x in scope.

We say that types such as unit× unit are pure. With such judgements, we

can extend the freshness inference algorithm to accept more expressions.

In order to make this of much use, however, the procedure of purity check-

ing must also cope when the type in question is a user-defined, possibly-

recursive datatype. How can one deduce whether atoms ever occur inside

a value of such a type? We invented a solution analogous to that used

by Standard ML[36] to compute whether such a type admits equality. We

start by asserting that values of each of the datatypes being (mutually)

declared may never contain atoms. Then, one-by-one until there are no

more changes, we remove any such judgement which may be contradicted

by examining the types of the various data constructors. In this way, we

converge on a greatest fixed point.

Since FreshML permits multiple user-defined types of bindable names,

we also refine the judgement a little further so we can deduce that values of

some datatype δ may never contain occurrences of atoms of bindable type τ ,

but might possibly contain occurrences of atoms of some other bindable type

τ ′. Improvements such as these increase the number of programs accepted

by the compiler and were found to be essential in practice. However, when

a program cannot be accepted it can be difficult for the programmer to

understand just why this is the case: the combination of type inference,

freshness inference and purity analysis can be formidable.

6.8.4 A note on denotational semantics

We should observe that freshness judgements inside a context ∇ may be

reflected in a denotational setting by taking subsets of the usual denotations

158 6. Freshness inference

of typing contexts. For we can define the FM-cppo

[[Γ;∇]] def= {ρ ∈ [[Γ]]
↓
| ∀(x, x′) ∈ ∇. ρ(x) /∈ supp(ρ(x′))} ∪ {⊥}

which is a subset of [[Γ]] (and inherits its permutation action). As an item

of possible future work, we postulate that freshness judgements could be

incorporated into our continuation-based semantics by providing functions

V[[Γ;∇ ` v : τ B X]] ∈ [[Γ;∇]] ([[τ]]

S[[Γ;∇ `s S : τ (B X]] ∈ [[Γ;∇]] ([[τ]]⊥

E [[Γ;∇ ` e : τ B X]] ∈ [[Γ;∇]] ([[τ]]⊥⊥.

However, it is not clear that such an extended semantics would be partic-

ularly useful for proving correctness properties (unless freshness inference

makes it back into the language, which is very unlikely). A more likely

application would be to validate the correctness of any optimisations which

might make use of freshness inference.

6.8.5 An abstraction monad

An interesting stepping-stone along the way to discarding freshness infer-

ence was the discovery that a monadic style of programming could be used

to conceal the side-effects of generating fresh names. The original motiva-

tion for wanting such a monad was simply to get FreshML-2000 programs

through the type-checker.

The monad may be encoded in Fresh Objective Caml13 in the style of a

Kleisli triple, thus:

type (’a,’b) abst = AMunit of ’b

| AMabst of <<’a name>>((’a,’b) abst);;

let am_unit v = AMunit v;;

let am_let d f =

match d with

AMunit v -> f v

| AMabst (<<a>>d’) -> AMabst (<<a>>(am_let d’ f));;

13Originally, we were working with Standard ML-style syntax—but we stick to Fresh

O’Caml syntax here for consistency with the rest of this thesis.

6.8. Freshness inference 159

An alternative (and, we suggest, more readable) encoding could make use

of a more general abstraction type as follows.

type (’a,’b) abst = AMabst of <<’a name list>>’b;;

let am_let =

function (AMabst (<<xs>>v)) ->

function f ->

match (f v) with AMabst (<<ys>>v’) ->

AMabst (<<xs @ ys>>v’);;

The am let function has the following type as would be expected.

am_let : ’a, ’b abst -> (’b -> (’a, ’c abst)) ->

(’a, ’c abst)

We can now conceal name generation by using the monad’s data construc-

tors to wrap up dynamically allocated names, coupled with am let to se-

quence side-effecting computations. However, if multiple types of bindable

names are involved we have to extend the monad in order to cope. It is also

convenient to add some extra helper functions corresponding to the monad

unit and multiplication. For example:

type (’a,’b,’c) abst =

AMabst of <<’a name list * ’b name list>>’c;;

let am_unit v = AMabst (<<[],[]>>v);;

let am_mult (AMabst (<<xs,ys>>(AMabst (<<xs’,ys’>>v)))) =

AMabst (<<xs@xs’,ys@ys’>>v);;

let am_let =

function (AMabst (<<xs,ys>>v)) ->

function f ->

match (f v) with AMabst (<<xs’,ys’>>v’) ->

AMabst (<<xs@xs’,ys@ys’>>v’);;

Using this extended monad, we can now present a new version of free vars

(the original of which is presented on page 156) which would get through

freshness inference.

let rec free_vars t =

match t with

160 6. Freshness inference

Tvar x -> am_unit [x]

| Tlam (ty, <<x>>t’) ->

am_mult (

AMabst(<<[x],[]>>

(am_let (free_vars t’)

(fun v ->

AMabst (<<[x],[]>>(remove x v))))))

| Tgen (<<a>>t’) ->

am_mult (AMabst (<<[],[a]>>(free_vars t’)))

| Tapp (t1, t2) ->

am_let (free_vars t1) (fun v1 ->

am_let (free_vars t2) (fun v2 ->

am_unit (v1 @ v2)))

| Tspec (t’, ty) -> free_vars t’;;

The type of free vars is now as follows. Note the effect of using gener-

ative type declarations such as those in §2.1.1: the arguments of the type

constructor name may be easily confused.

free_vars : term -> (t, t, var list) abst

We leave it to the reader to decide for themselves which is the most attrac-

tive gargoyle: this fragment or the refactored one on page 156.

7 Conclusions and future work

‘We can only see a short distance

ahead, but we can see plenty there

that needs to be done.’ —Turing

It is now time to take a step back and assess the work in this thesis. We

believe that our major contributions have been:

• the development of a full-scale language, Fresh O’Caml, for metapro-

gramming with bindable names;

• the development of FM-domain theory, for reasoning about names and

name binding;

• a denotational semantics using frame-stack semantics and a monad of

continuations to model name generation;

• a detailed proof of correctness properties for Mini-FreshML.

So far, Fresh O’Caml has proved itself very useful for the rapid prototyping

or first implementation of syntax-manipulating algorithms. However, much

remains to be done. The implementation is not yet in a production-ready

state and there are still some significant issues to be resolved. These include

the improvement of efficiency, which we shall address again later in this

chapter, and language enhancements such as a more pragmatic treatment

of reference cells (viz. §2.6).

We believe that the mathematical theory developed in Chapter 4 is more

generally-applicable beyond the scope of a denotational semantics for a

Mini-FreshML-like language. There are already two examples of wider ap-

plication within the literature: that which we cited in §1.2 by Abramsky et

al.[2] which applies FM-domain theory to the world of game semantics; and

that by Benton and Leperchey[6] which applies it to reason about mutable

store.

161

162 7. Future work

The denotational semantics which we presented in Chapter 5 is, how-

ever, is rather more specialised to our particular setting. Whilst we do claim

that it is good for proving properties such as those we have seen, there are

clearly open questions—particularly in the areas of full abstraction and the

validation of certain troublesome equivalences such as those mentioned in

§5.6. However, use of the continuation monad to model name generation

is most definitely a generally-applicable tool to use in conjunction with FM-

domain theory—see [6] again for example.

7.1 Future work

7.1.1 Delayed permutations

We noted in §6.6.1 that a scheme of delayed permutations (somewhat rem-

iniscent of [1]) could be used to improve efficiency—indeed, this is one of

the major speed improvements pending implementation in Fresh O’Caml.

In this section we examine how delayed permutations could be introduced

to Mini-FreshML, working from an idea originally due to Mark Shields (pri-

vate communication). The presentation is much simplified by adopting an

environment-style semantics (described in §3.5).

What we are going to do is to partition the canonical forms into two

varieties: those equipped with a pending permutation which is manifest on

the outside and those without. Canonical forms in the second category may

still contain pending permutations deeper within their structure; but they

may be immediately examined at the top level without any atom-swapping

being required. So the new grammar of values is as follows:

v ::= () unit

| a atom

| Ck(vp) data construction

| (vp, vp) pairing

| <<a>>vp abstraction

| [E, fun x(x) = e] recursive function closure

vp ::= π ∗ v value with delayed permutation

where π stands for a permutation generated like so:

π ::= [] null permutation

| (a a′) :: π atom-swap

7.1. Future work 163

and where E is a finite map from value identifiers to values with delayed

permutations vp. We write π(a) to indicate the bona-fide application of a

permutation to an atom. Given a value with delayed permutation vp = π ∗ v
and any permutation π′ we write π′ ∗ vp to be the value (π′ @ π) ∗ v, where

π′ @ π is that permutation whose action first permutes as for π and then as

for π′.

The grammar for (non-canonical) expressions is as in Figure 3.1, with

the exception that naked atoms a no longer appear. (This is a pleasing

consequence of using an environment-style semantics: the canonical forms

do not have to be a subset of the expressions. If using substituted-in style,

then the necessity to delay permutations throughout closures means that

the grammar for non-canonical forms needs extending with delayed permu-

tations as well: this rapidly becomes very difficult to deal with.)

The semantics makes use of an auxiliary function cf(–) which takes a

value with delayed permutation vp and pushes the permutation through the

first level of its structure, thus making the outermost constructor manifest.

This transformation is defined as follows:

cf(π ∗ ()) def= ()

cf(π ∗ a) def= π(a)

cf(π ∗ Ck(vp))
def= Ck(π ∗ vp)

cf(π ∗ (vp, v′p))
def= (π ∗ vp, π ∗ v′p)

cf(π ∗ <<a>>vp)
def= <<π(a)>>π ∗ vp

cf(π ∗ [E, fun f(x) = e]) def= [{(x, π ∗ vp) | (x, vp) ∈ E} ,
fun f(x) = e].

Figures 7.1 and 7.2 provide a revised big-step semantics using an evaluation

relation ⇓p on 5-tuples (a,E, e, v, a′), where a, a′ are finite sets of atoms, E

is an environment as described above, e is an expression and v a value with

its outermost constructor manifest. We write a,E ` e ⇓p v, a
′ iff (a,E, e, v, a′)

is in the relation.

Note that the procedure of purity analysis discussed in §6.8.3 could be

applied to discard unnecessary pending permutations. For given a value

π ∗ v of type τ then we can simplify it to [] ∗ v if τ is pure. However,

implementation of this will require more type information in the runtime

heap than is present when using current versions of Fresh O’Caml.

164 7. Future work

vid
a,E ` x ⇓p cf(E(x)), a

x ∈ dom(E) unit
a,E ` () ⇓p (), a

con
a,E ` e ⇓p v, a

′

a,E ` Ck(e) ⇓p Ck([] ∗ v), a′
fresh

a,E ` fresh ⇓p a, a] {a}
a ∈ A \ a

pair
a,E ` e ⇓p v, a

′ a′, E ` e′ ⇓p v
′, a′′

a,E ` (e, e′) ⇓p ([] ∗ v, [] ∗ v′), a′′

abst
a,E ` e ⇓p a, a

′ a′, E ` e′ ⇓p v, a
′′

a,E ` <<e>>e′ ⇓p <<[] ∗ a>>[] ∗ v, a′′

swap
a,E ` e ⇓p a, a

′ a′, E ` e′ ⇓p a
′, a′′ a′′, E ` e′′ ⇓p v, a

′′′

a,E ` swap e, e′ in e′′ ⇓p cf((a a′) :: [] ∗ v), a′′′
a, a′ ∈ A

fun
a,E ` fun f(x) = e ⇓p [E, fun f(x) = e], a

app

a,E ` e ⇓p [E′, fun f(x) = e′′], a′ a′, E ` e′ ⇓p v
′, a′′

a′′, E′[f 7→ [] ∗ [E′, fun f(x) = e′′], x 7→ [] ∗ v′] ⇓p v, a
′′′

a,E ` e e′ ⇓p v, a
′′′

Figure 7.1: Big-step semantics with delayed permutations: part 1.

We now wish to relate the new scheme of evaluation to the original one

used in Chapter 5. To do this, define the function erase mapping values

with their outermost constructor manifest to canonical forms containing no

permutations (in the sense of Figure 3.1) as follows.

erase(()) def= ()

erase(a) def= a

erase(Ck(vp))
def= Ck(erase(cf(vp)))

erase((vp, v′p))
def= (erase(cf(vp)), erase(cf(v′p)))

erase(<<π ∗ a>>vp)
def= <<π(a)>>erase(cf(vp))

erase([E, fun f(x) = e]) def= [{(x, erase(cf(vp))) | (x, vp) ∈ E} ,
fun f(x) = e].

We now claim the following, whose proof is left to future work.

Conjecture 7.1.1. Given any environment E, write e[E] for that expression

formed by substituting x for E(x) throughout e, for each x ∈ dom(E). Then

7.1. Future work 165

vid
a,E ` x ⇓p cf(E(x)), a

x ∈ dom(E) unit
a,E ` () ⇓p (), a

con
a,E ` e ⇓p v, a

′

a,E ` Ck(e) ⇓p Ck([] ∗ v), a′
fresh

a,E ` fresh ⇓p a, a] {a}
a ∈ A \ a

pair
a,E ` e ⇓p v, a

′ a′, E ` e′ ⇓p v
′, a′′

a,E ` (e, e′) ⇓p ([] ∗ v, [] ∗ v′), a′′

abst
a,E ` e ⇓p a, a

′ a′, E ` e′ ⇓p v, a
′′

a,E ` <<e>>e′ ⇓p <<[] ∗ a>>[] ∗ v, a′′

swap
a,E ` e ⇓p a, a

′ a′, E ` e′ ⇓p a
′, a′′ a′′, E ` e′′ ⇓p v, a

′′′

a,E ` swap e, e′ in e′′ ⇓p cf((a a′) :: [] ∗ v), a′′′
a, a′ ∈ A

fun
a,E ` fun f(x) = e ⇓p [E, fun f(x) = e], a

app

a,E ` e ⇓p [E′, fun f(x) = e′′], a′ a′, E ` e′ ⇓p v
′, a′′

a′′, E′[f 7→ [] ∗ [E′, fun f(x) = e′′], x 7→ [] ∗ v′] ⇓p v, a
′′′

a,E ` e e′ ⇓p v, a
′′′

let
a,E ` e ⇓p v

′, a′ a′, E[x 7→ [] ∗ v′] ` e′ ⇓p v, a
′′

a,E ` let x = e in e′ ⇓p v, a
′′

letpair
a,E ` e ⇓p (vp, v′p), a

′ a′, E[x 7→ vp, x
′ 7→ v′p] ` e′ ⇓p v, a

′′

a,E ` let (x, x′) = e in e′ ⇓p v, a
′′

letabst

a,E ` e ⇓p <<a>>v
′
p, a

′

a′] {a′}, E[x 7→ [] ∗ a′, x′ 7→ (a a′) :: [] ∗ v′p] ` e′ ⇓p v, a
′′

a,E ` let <<x>>x′ = e in e′ ⇓p v, a
′′ a′ ∈ A \ a′

if

a,E ` e ⇓p a, a
′ a′, E ` e′ ⇓p a

′, a′′

a = a′ ⇒ a′′, E ` e′′ ⇓p v, a
′′′ a 6= a′ ⇒ a′′, E ` e′′′ ⇓p v, a

′′′

a,E ` if e = e′ then e′′ else e′′′ ⇓p v, a
′′′

match
∃j. (a,E ` e ⇓p Cj(vp), a

′ ∧ a′, E[xj 7→ vp] ` ej ⇓p v, a
′′)

a,E ` match e with · · · | Ck(xk) -> ek | · · · ⇓p v, a
′′

Figure 7.2: Big-step semantics with delayed permutations: part 2.

for any Mini-FreshML evaluation judgement a, e[E] ⇓ v, a′ there exists at least

one judgement a,E ` e ⇓ p, a′ with v = erase(p). Moreover, given a judgement

166 7. Future work

a,E ` e⇓p p, a
′ then there exists a unique judgement a` e[E]⇓ erase(p), a′. �

Note that the Proposition is carefully worded to take into account the

fact that erase(–) is not injective: there may exist multiple values with

delayed permutations which map onto the same canonical form. (Take for

example atoms a, a′ and consider the two values [] · a and ((a a′) · ::[]) · a′.)

7.1.2 Data structures and algorithms

Within the Objective Caml standard library are many useful modules im-

plementing standard data structures and their associated algorithms. Here

we shall single out just two: hash tables and finite maps (the latter being

implemented using balanced binary trees). These are worthy of study due

to the issues which arise when attempting to store atoms within them. This

is a very common occurrence: for example, we often wish to represent an

environment inside an evaluator using a map from atoms to values.

Unfortunately, the interactions between such data structures and our

freshness features are non-trivial to say the least. In particular, there are

two serious problems which arise:

1. There is no ordering on atoms, which inhibits the writing of compari-

son functions (which are needed in order to use the Map.Make functor,

for example).

2. Data structures such as hash tables and balanced binary trees are

not equivariant constructions, in some sense: blindly swapping atoms

throughout them destroys their invariants. In the case of a hash table

keyed on atoms, for example, a swapping operation may require val-

ues to switch buckets (in the case where the transpositions affect the

keys in such a way as to make them correspond to alternative buckets).

A corollary of point 1 above is that there is no immediate way to ‘hash atoms’

(say for calculating hash table bucket numbers).

Recall (§6.3) that atoms inside the runtime system are represented by

integers. This can actually be exposed at the language level1 through the

use of the function Hashtbl.hash. (For example, this could be used as the

1Well, in fact they can be exposed using functions inside the Obj module as well.

However, such operations are naughty and enable you to break pretty much any safety

property. . .

7.1. Future work 167

key for a balanced binary tree mapping from atoms to pieces of data.) We

conjecture that the language still correctly represents α-equivalence classes

of object language terms even in the presence of an atom-hashing primitive

(because it cannot be used to bypass the procedure for deconstructing ab-

straction values), although this is still not entirely clear and it remains an

item of future work to rigorously prove it.

Now what about the problem of fundamentally non-equivariant con-

structions? It appears that outsourcing some of the swapping operations to

the user-level may help here. Basically, the idea is to enable the programmer

of one of the offending modules to specify a function which should be called

by the runtime system whenever a swapping operation must be performed

upon such a data structure. The programmer would have to ensure that

such a function satisfied the necessary algebraic identities (viz. those in

§4.1). Recent work by Sewell, Wansbrough et al. on the Acute project[57],

which has produced around 25,000 lines of Fresh O’Caml code, seems to

uphold our belief that this proposal would be useful. Using the hash table

example, the programmer could specify a function which ensures that values

are moved between buckets if the swapping affects the keys of the table.

Similar transformations could be effected if balanced binary trees are keyed

on atoms. Depending on the particular data structure in question, the

programmer may wish to delay swapping operations until they are really

needed in order to improve efficiency.

At the current time, there is some very experimental support (through

an undocumented language construct known as custom swap) for this user-

level swapping. It is likely that this will be made robust in the near future.

Hopefully, this will make the O’Caml standard library much more useful for

Fresh O’Caml programmers.

7.1.3 Objects and modules

Being fundamental parts of the O’Caml language and important tools for

structuring programs, we must say a few words about objects and modules.

How do such features interact with our facilities for handling binding? In

the case of objects, the interactions have not been studied: it is an item

of future work which would be worth pursuing. As for modules, we believe

that the system is well-behaved, although no formal correctness results have

168 7. Future work

. Fragment 1:

let a = fresh in

let r = ref a in

let x = <<a>>r in

match x with <<p>>q -> !r = a;;

. Fragment 2:

let a = fresh in

let x = <<a>>(ref a) in

match x with <<p>>q ->

match x with <<p’>>q’ -> !p’ = !q’;;

Figure 7.3: Examples involving mutable state.

been proven. It is however certainly the case that swapping may occur on

values of abstract type with no difficulties, because the values really are

concrete when seen by the runtime system.

7.1.4 Reference cells

We saw in §2.6 that the addresses of reference cells are treated as being

pure. A major item of future work is to develop the necessary theory to

change this view of references, which comes down to to formulating a

suitable notion of swapping on reference cells. Näıve solutions do not work:

if the result of swapping atoms a, a′ on a reference cell containing a were

to be the same reference cell with the contents changed to a′, then highly

unpredictable behaviour would result. Imagine for a few moments that we

use this semantics and consider the fragments in Figure 7.3. The result of

evaluating both code fragments would in fact be false. In the first, the

pattern-match causes side-effects not only in the generation of the fresh

name to be bound to p, but also in updating the reference cell. The second

example is even more pertinent: after the first match, the value x will be

of the form <<a>>ref a′ for atoms a, a′—the binding structure has been

destroyed. The second match enables us to identify this.

7.1. Future work 169

We believe that a sensible approach might view references as presenting

particular ‘views’ onto graph structures. Whilst a notion of α-equivalence

on such structures should not be problematic to define, there are difficulties

arising from the runtime pointer-chasing which this could involve.

Discussions with Xavier Leroy identified a possible solution which would

exploit the delayed permutations discussed in §7.1.1. The idea is that trans-

positions may be applied to reference addresses, but remain delayed there

until the cell is dereferenced. At that time, a copy of the reference’s contents

will be returned with the pending permutation now attached to them. This

provides multiple ‘views’ onto the graph structure, each of which may be

equipped with different permutations. One difficulty with this scheme,

however, is working out how to formulate a suitable notion of equality on

references. At first sight, it seems as if the way to compare two reference ad-

dresses for equality would be to proceed as normal, discarding any pending

permutations. However, then the situation could arise where two reference

addresses are equal but their contents differ (due to different pending per-

mutations being attached to each address, which are to be applied only at

dereference-time).

Future work must establish whether a sound scheme based on this pro-

posal is viable and how difficult it would be to implement.

7.1.5 Enhanced abstraction types

Another fruit of the work on the Acute system[57] has been some ideas

relating to enhanced abstraction types. The first proposal is to introduce

a distinguished type constructor, perhaps called nobind, which identifies

points in syntax trees under which the transpositions introduced by decon-

structing abstraction values would be nullified. (One could also consider

having the opposite situation, where abstraction expressions do not by de-

fault represent binding constructs. To indicate an occurrence of a bound

name in the syntax tree, one would have to tag the corresponding part of the

type declaration with a distinguished constructor bind.) To see how all of

this works, consider a grammar for patterns which can contain both pattern

variables and type variables (the latter encapsulated inside explicit type

annotations). Both of these varieties of variable would likely be represented

in Fresh O’Caml by different types of bindable names. The patterns could

170 7. Future work

then occur within a syntax tree representing a match construct, say, which

only binds pattern variables and not type variables. The new scheme permits

an encoding as follows.

type t and var = t name;;

type t and tyvar = t name;;

type ty = Tvar of tyvar

| ... ;;

type pat = Pvar of var

| Ptyped of pat * (ty nobind)

| ... ;;

type expr = Ematch of expr * ((<<pat>>expr) list)

| ... ;;

Now one can have only the pattern variables freshened up when decon-

structing a data value built with Ematch.

A second proposal relates to improvements in efficiency. In a large-scale

system, it is clear (and has been experimentally verified) that the overhead

of atom-swapping throughout syntax trees is significant. Even if the method

of delayed permutations (§7.1.1) were to be implemented, it would still be

highly desirable to minimise the amount of swapping required. One means

of doing this would be to allow the programmer to specify that swapping

operations should never look inside certain parts of values.

The particular example cited by Wansbrough (private communication)

concerns a type declaration for abstract syntax trees containing closures.

Such a closure is designed to always have empty support (since it encapsu-

lates all of the free variables of the relevant function within it). Therefore

no swapping operation ever needs to propagate inside. However, there

is currently no way of preventing this. It is thought that a distinguished

type constructor could be used to identify parts of values which are to be

bypassed in this way. The nobind constructor from above may suffice for

this purpose. Of course, it is then up to the programmer to ensure that the

special tag is used sensibly—rather than the language ensuring safety—but

we do not believe that incorporating such a feature would be dangerous (in

the sense of directly compromising the correctness properties of Chapter 5).

7.1. Future work 171

7.1.6 Standard library enhancements

There is much to be said for minimising the number of language primitives

which are hard-coded into the Fresh O’Caml compiler. This can be done by

moving functionality into the standard library, making it easier to migrate

the compiler modifications to new versions of the O’Caml system. It is not

quite clear where the divide between inbuilt and library functionality should

lie, however. One reasonable scenario would be to keep the expressions

for generating fresh names together with those for constructing and decon-

structing abstractions as inbuilt features. The swap and freshfor keywords

would then be replaced by functions in the standard library.

Alongside these modifications, additional library functions could use-

fully be provided. A function permitting the application of non-trivial per-

mutations of atoms (rather than just single swaps) to values could be useful;

meanwhile, both this and the normal swapping function could be specialised

to variants which provide ‘fresh renaming’ as a convenience.

It might also be useful to incorporate a function which takes an arbitrary

value and returns its algebraic support. (Such a function already exists

inside the runtime system, but is not available to the programmer.) How-

ever, it is not clear what type such a function could be assigned: the atoms

throughout the value may be of different bindable types. It is possible that

a more advanced sorting system for atoms (viz. §2.1.1) would help here.

7.1.7 Denotational semantics

It is clear that our denotational semantics could be of use in order to prove

further properties of Mini-FreshML-like languages. For example, it may be

possible to prove Conjecture 7.1.1 via denotational methods. The denota-

tional semantics could be extended to provide reasoning principles about

other language constructs which might be present in Fresh O’Caml. One

obvious place where the semantics is lacking is in support for abstraction

types more complicated than just <<name>>τ . Fresh O’Caml supports such

types and provides algorithms for computing equality between values of

such types, but this does not currently have a justification in our denota-

tional semantics. In order to support this, FM-domain theory needs to be

further developed to allow FM-cppos [D]D′ to be constructed for arbitrary

D and D′. Whilst one can sketch possible constructions of such an FM-

172 7. Future work

cppo (whose counterparts in FM-set theory are well-understood) it is not

at all clear whether, for example, they are suitably chain-complete; previ-

ous experiences with dynamic allocation monads (§5.1.1) suggest that such

order-theoretic completeness properties may prove troublesome.

It should also be noted that generalised abstraction types <<τ>>τ ′ are

very difficult to incorporate with the procedure of freshness inference. For

given an identifier x and an expression E
def= <<e>>e′, where e is of some

arbitrary type τ , then we can only deduce x B E iff the identifier x is

definitely not fresh for e, or else if x is certainly fresh for e and also e′. The

difficulty lies in the ‘not fresh’ part, for this necessitates building up sound

judgements2 x ¬B e as well as the ‘fresh for’ judgements. Despite some

(unpublished) work on the subject by the author, no satisfactory algorithm

has yet been found to infer such judgements.

Another interesting thing to note is that we should not necessarily re-

strict ourselves to using the continuation monad (D (R) (R. There are

others, for example:

(D→R) (R non-strict use of the continuation’s argument

(D (R)→R non-strict use of the continuation

The choice of which monad to use should be driven by the operational

semantics of the language. For example, a language which permits any form

of control flow enabling a program to abort without examining the current

continuation would best be modelled by the (D (R) → R monad. And

although we have not investigated it further, we also note that our current

denotational semantics is an example of linearly-used continuations[7].

A useful extension to the denotational semantics would be a treatment of

imperative features such as references: mutable state can be easily captured

by using S (1⊥ instead of just 1⊥ throughout the semantics, given a

recursively-defined FM-cppo S of stores. Indeed, recent work by Benton et

al.[6] does indeed develop a theory along these lines with a view to verifying

equivalences such as the famous Meyer-Sieber examples[32].

2‘Staleness judgements’ might be a suitable name for such statements, although that

name has not found favour with some!

7.2. And finally. . . 173

7.2 And finally. . .

The time has come to draw this thesis to a close. We hope that the reader

has enjoyed all that has been set before them.

Fresh Objective Caml has so far proved to be extremely useful. Along

with this, the underlying mathematical treatment has given rise to new

theories to model name generation and binding. However much remains

to be done. Future work, some of which is already planned, will no doubt

enhance both the theory and the implementation. But as an end in itself, we

hope that the work completed for this thesis has formed a solid foundation

for further research.

Bibliography

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lèvy. Explicit substitutions.

In Conference Record of the Seventeenth Annual ACM Symposium on

Principles of Programming Languages, San Francisco, California, pages

31–46. ACM, 1990.

[2] S. Abramsky, D. Ghica, A. Murawski, L. Ong, and I. D. B. Stark.

Nominal games and full abstraction for the nu-calculus. In Proceedings

of the 19th Annual IEEE Symposium on Logic in Computer Science, pages

150–159. IEEE Computer Society Press, 2004.

[3] S. Abramsky and A. Jung. Domain theory. In Handbook of Logic in

Computer Science, volume 3, pages 1–168. Clarendon Press, 1994.

[4] D. Ancona and E. Moggi. A fresh calculus for name management. In

Generative Programming and Component Engineering, volume 3286 of

Lecture Notes in Computer Science. Springer-Verlag, 2004.

[5] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.

North-Holland, 1984.

[6] N. Benton and B. Leperchey. Relational reasoning in a nomi-

nal semantics for storage (preliminary report). Available from

http://research.microsoft.com/∼nick/, November 2004.

[7] J. Berdine, P. O’Hearn, U. Reddy, and H. Thielecke. Linear

continuation-passing. Higher Order and Symbolic Computation,

15(2/3):181–208, 2002.

[8] R. M. Burstall. Proving properties of programs by structural induction.

The Computer Journal, 12(1):41–48, 1969.

[9] L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with hidden

labels. In A. D. Gordon, editor, Proceedings of the 6th International Con-

175

176 BIBLIOGRAPHY

ference on Foundations of Software Science and Computation Structures

(FOSSACS 2003), volume 2620 of Lecture Notes in Computer Science,

pages 216–232. Springer-Verlag, 2003.

[10] J. Cheney and C. Urban. Alpha-prolog: A logic programming language

with names, binding and alpha-equivalence. In B. Demoen and

V. Lifschitz, editors, Proceedings of the 20th International Conference

on Logic Programming (ICLP 2004), volume 3132 of Lecture Notes in

Computer Science, pages 269–283. Springer-Verlag, 2004.

[11] N. de Bruijn. Lambda calculus notation with nameless dummies: a tool

for automatic formula manipulation, with application to the Church-

Rosser theorem. Indagationes Mathematicae, 34:381–391, 1972.

[12] N. de Bruijn. A survey of the project AUTOMATH. To H. B. Curry: essays

on combinatory logic, lambda calculus, and formalism, pages 597–606,

1980.

[13] D. de Rauglaudre. Camlp4 reference manual. Available from

http://caml.inria.fr/camlp4/index.html, 2004.

[14] J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract

syntax in Coq. In M. Dezani and G. Plotkin, editors, Proceedings

of the TLCA’95 International Conference on Typed Lambda Calculi and

Applications, volume 902 of Lecture Notes in Computer Science, pages

124–138. Springer-Verlag, 1995.

[15] J. Despeyroux, F. Pfenning, and C. Schürmann. Primitive recursion for

higher-order abstract syntax. In P. de Groote and J. R. Hindley, editors,

Proceedings of the TLCA’97 International Conference on Typed Lambda

Calculi and Applications, volume 1210 of Lecture Notes in Computer

Science, pages 147–163. Springer-Verlag, 1997.

[16] M. Fernández, M. Gabbay, and I. Mackie. Nominal rewriting. Submit-

ted, January 2004.

[17] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable

binding. pages 193–202, 1999.

177

[18] M. J. Gabbay. A Theory of Inductive Definitions with α-Equivalence:

Semantics, Implementation, Programming Language. PhD thesis, Uni-

versity of Cambridge, 2000.

[19] M. J. Gabbay. Automating Fraenkel-Mostowski syntax. In 15th

International Conference on Theorem Proving in Higher Order Logics

(TPHOLs), 2002. Work-in-progress submission, to be published as a

NASA technical report.

[20] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with

variable binding. Formal Aspects of Computing, 13:341–363, 2002.

[21] M. J. Gabbay and L. Wischik. Implementing a bisimulation checker in

Fresh O’Caml. Submitted, April 2004.

[22] J. Y. Girard. Interprétation functionelle et élimination des coupures dans

l’arithmétique d’ordre supérieure. PhD thesis, Université Paris VII, 1972.

[23] J. Y. Girard. The system F of variable types, fifteen years later.

Theoretical Computer Science, 45:159–192, 1986.

[24] M. Hofmann. Semantical analysis of higher-order abstract syntax. In

14th Logic in Computer Science Conference (LICS’99), pages 204–213.

IEEE Computer Society Press, 1999.

[25] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal

core calculus for Java and GJ. In L. Meissner, editor, Proceedings of

the 1999 ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages & Applications (OOPSLA‘99), volume 34(10),

pages 132–146. Addison-Wesley, 1999.

[26] B. W. Kernighan and D. M. Ritchie. The C Programming Language,

Second Edition. Prentice-Hall, 1988.

[27] F. Le Fessant and L. Maranget. Optimizing pattern-matching. In

Proceedings of the 2001 International Conference on Functional Pro-

gramming (ICFP’01), pages 26–37. ACM Press, 2001.

[28] P. B. Levy. Martin-Löf Clashes With Griffin, Operationally. Available

from http://www.cs.bham.ac.uk/∼pbl/papers/.

178 BIBLIOGRAPHY

[29] I. A. Mason and C. L. Talcott. Equivalence in functional languages with

effects. Journal of Functional Programming, 1(3):287–327, 1991.

[30] J. McCarthy. Towards a mathematical science of computation. IFIP

Congress 1962, 1963.

[31] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming

with bananas, lenses, envelopes, and barbed wire. In Proceedings

of the FPCA’91 conference on Functional Programming Languages and

Computer Architecture, volume 523 of Lecture Notes in Computer

Science, pages 124–144. Springer-Verlag, 1991.

[32] A. R. Meyer and K. Sieber. Towards fully abstract semantics for local

variables. In Proceedings of the 15th ACM SIGPLAN/SIGACT Symposium

on Principles of Programming Languages, POPL’88, pages 191–203.

ACM Press, 1988.

[33] D. A. Miller. An extension to ML to handle bound variables in

data structures: Preliminary report. In Proceedings of the Logical

Frameworks BRA Workshop, 1990.

[34] R. Milner. Communicating and Mobile Systems: the Pi-Calculus.

Cambridge University Press, 1999.

[35] R. Milner. What’s in a name? In A. Herbert and K. Spärck

Jones, editors, Computer Systems: Theory, Technology and Applications.

Springer-Verlag, 2003.

[36] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of

Standard ML: Revised. The MIT Press, 1997.

[37] E. Moggi. An abstract view of programming languages. Technical Re-

port ECS-LFCS-90-113, Department of Computer Science, University

of Edinburgh, 1989.

[38] E. Moggi. Notions of computation and monads. Information and

Computation, 93(1):55–92, 1991.

[39] R. M. Needham. Names. In S. Mullender, editor, Distributed Systems,

pages 315–326. Addison-Wesley, 1993.

179

[40] S. L. Peyton Jones. Tackling the awkward squad: Monadic in-

put/output, concurrency, exceptions, and foreign-language calls in

Haskell. In C. A. R. Hoare, M. Broy, and R. Steinbruggen, editors,

Engineering Theories of Software Construction, pages 47–96. IOS Press,

2001.

[41] S. L. Peyton Jones. Secrets of the Glasgow Haskell Compiler inliner.

Journal of Functional Programming, 12(4):393–434, 2002.

[42] S. L. Peyton Jones, editor. Haskell 98 Language and Libraries: The

Revised Report. Cambridge University Press, 2003. Also available from

http://www.haskell.org/definition/.

[43] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings

of the ACM SIGPLAN ’88 Conference on Programming Language Design

and Implementation (PLDI), pages 199–208. ACM Press, 1988.

[44] A. M. Pitts. Typed operational reasoning. In B. C. Pierce, editor,

Advanced Topics in Types and Programming Languages, chapter 3, pages

165–199. The MIT Press. To appear.

[45] A. M. Pitts. Computational adequacy via ‘mixed’ inductive definitions.

In Proceedings of the 9th International Conference on Mathematical

Foundations of Programming Semantics, volume 802 of Lecture Notes

in Computer Science, pages 72–82. Springer-Verlag, 1994.

[46] A. M. Pitts. Relational properties of domains. Information and

Computation, 127:66–90, 1996. (A preliminary version of this work

appeared as Cambridge University Computer Laboratory Technical

Report 321, December 1993).

[47] A. M. Pitts. A note on logical relations between semantics and syntax.

Logic Journal of the Interest Group in Pure and Applied Logics, 5(4):589–

601, July 1997.

[48] A. M. Pitts. Operational semantics and program equivalence. In

G. Barthe, P. Dybjer, and J. Saraiva, editors, Applied Semantics,

Advanced Lectures, volume 2395 of Lecture Notes in Computer Science,

Tutorial, pages 378–412. Springer-Verlag, 2002.

180 BIBLIOGRAPHY

[49] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with

bound names modulo renaming. In R. Backhouse and J. N. Oliveira,

editors, Proceedings of the 5th International Conference on Mathematics

of Program Construction, volume 1837 of Lecture Notes in Computer

Science, pages 230–255. Springer-Verlag, 2000.

[50] A. M. Pitts and I. D. B. Stark. Observable properties of higher order

functions that dynamically create local names, or: What’s new? In

Mathematical Foundations of Computer Science, Proc. 18th Int. Symp.,

Gdańsk, 1993, volume 711 of Lecture Notes in Computer Science, pages

122–141. Springer-Verlag, 1993.

[51] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions

with local state. In A. D. Gordon and A. M. Pitts, editors, Higher

Order Operational Techniques in Semantics, Publications of the Newton

Institute, pages 227–273. Cambridge University Press, 1998.

[52] G. D. Plotkin. Pisa notes (on domain theory). Available from

http://homepages.inf.ed.ac.uk/gdp/publications/, 1983.

[53] C. Raffalli. A package for abstract syntax with binder. 1998.

[54] J. C. Reynolds. Towards a theory of type structure. In Paris Colloquium

on Programming, volume 19 of Lecture Notes in Computer Science,

pages 408–425. Springer-Verlag, 1974.

[55] J. C. Reynolds. Types, abstraction, and parametric polymorphism.

Information Processing, pages 513–523, 1983.

[56] U. Schöpp and I. D. B. Stark. A dependent type theory with names

and binding. In Computer Science Logic: Proceedings of the 18th

International Workshop CSL 2004, volume 3210 of Lecture Notes in

Computer Science, pages 235–249. Springer-Verlag, 2004.

[57] P. E. Sewell, J. J. Leifer, K. Wansbrough, M. Allen-Williams,

F. Zappa Nardelli, P. Habouzit, and V. Vafeiadis. Acute: high-

level programming language design for distributed computation.

Design rationale and language definition. University of Cam-

bridge Computer Laboratory Technical Report 605. Available from

http://www.cl.cam.ac.uk/users/pes20/acute/index.html, 2004.

181

[58] T. Sheard. Accomplishments and research challenges in meta-

programming. In volume 2196 of Lecture Notes in Computer Science,

Springer-Verlag, 2001.

[59] M. R. Shinwell. The implementation of FreshML. Dissertation for

Part II of the Cambridge University Computer Science Tripos, 2000.

Available from http://www.cl.cam.ac.uk/∼mrs30/.

[60] M. R. Shinwell. Swapping the atom: Programming with binders in

Fresh O’Caml. Proceedings of the MERλIN Workshop, 2003.

[61] M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness.

Theoretical Computer Science. To appear; a preliminary version appears

in the proceedings of the second workshop of the EU FP5 IST thematic

network IST-2001-38957 APPSEM II, Tallinn, Estonia, April 2004.

[62] M. R. Shinwell and A. M. Pitts. Fresh O’Caml User Manual.

Cambridge University Computer Laboratory, 2003. Available at

http://www.freshml.org/.

[63] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming

with binders made simple. In Proceedings of the Eighth ACM SIGPLAN

International Conference on Functional Programming (ICFP’03), pages

263–274. ACM Press, 2003.

[64] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of

recursive domain equations. SIAM Journal of Computing, 11(4):761–

783, 1982.

[65] I. D. B. Stark. Names and Higher-Order Functions. PhD thesis,

University of Cambridge, December 1994. Also available as University

of Cambridge Computer Laboratory Technical Report 363.

[66] I. D. B. Stark. Categorical models for local names. Lisp and Symbolic

Computation, 9(1):77–107, 1996.

[67] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. In

M. Baaz, editor, Computer Science Logic and 8th Kurt Gödel Colloquium

(CSL’03 & KGC), Vienna, Austria., volume 2803 of Lecture Notes in

Computer Science, pages 513–527. Springer-Verlag, 2003.

182 BIBLIOGRAPHY

[68] P. Wadler. Compilation of pattern matching. In S. L. Peyton Jones,

editor, The Implementation of Functional Programming Languages,

chapter 7. Prentice-Hall International, 1987.

[69] P. Wadler. Theorems for free! In 4th International Symposium on

Functional Programming Languages and Computer Architecture. ACM

Press, 1989.

[70] G. Washburn and S. Weirich. Boxes go bananas: Encoding higher-

order abstract syntax with parametric polymorphism. In Proceedings

of the Eighth ACM SIGPLAN International Conference on Functional

Programming (ICFP’03), pages 249–262. ACM Press, 2003.

[71] A. Wright and M. Felleisen. A syntactic approach to type soundness.

Information and Computation, 115(1):38–94, 1994.

